无机材料学报

• 研究论文 • 上一篇    下一篇

铜集流体晶面调控诱导锌均匀沉积的长循环水系锌碘电池

乔君毅, 李涛, 董鑫吉, 杨涵戈, 林天全   

  1. 上海交通大学 材料科学与工程学院,上海200240
  • 收稿日期:2025-10-27 修回日期:2015-11-28
  • 通讯作者: 林天全, 研究员. E-mail: tqlin@sjtu.edu.cn
  • 作者简介:乔君毅(2002–), 男, 硕士研究生. E-mail: jyqiao0907@sjtu.edu.cn
  • 基金资助:
    上海市基础研究特区计划 (BS0500036)

Regulation of Copper Current Collector's Crystal Planes Enables Uniform Zinc Deposition for Long-Cycling Aqueous Zinc-Iodine Batteries

QIAO Junyi, LI Tao, DONG Xinji, YANG Hange, LIN Tianquan   

  1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-10-27 Revised:2015-11-28
  • Contact: LIN Tianquan, investigator. E-mail: tqlin@sjtu.edu.cn
  • About author:QIAO Junyi (2002–), male, Master candidate. E-mail: jyqiao0907@sjtu.edu.cn
  • Supported by:
    Shanghai Basic Research Special Zone Program (BS0500036)

摘要: 水系锌离子电池因其本征安全和成本低廉等优势,在大规模储能领域展现出广阔前景。然而,锌负极在沉积/剥离过程中易产生枝晶生长,这严重限制了其循环寿命与商业化应用。作为锌沉积的基底,集流体的界面特性对锌的沉积行为具有决定性影响。本工作采用高温退火还原法对商用铜集流体进行改性,系统探究了微观结构重构对锌沉积机理及电化学性能的调控作用。研究表明,退火处理诱导铜集流体发生晶体学重构,形成以(111)晶面为主的择优取向,同时有效降低了位错密度与表面缺陷。锌在Cu(111)晶面上的扩散能垒较低,而Zn(002)与Cu(111)晶面之间的界面能最低,这种热力学与动力学的协同作用促进了锌的均匀外延沉积,有效抑制了枝晶生长,并引导锌沉积层产生(002)晶面择优取向。基于此,改性集流体表现出优异的沉积/剥离可逆性,循环寿命超过4000圈,平均库仑效率高达99.9%。将该集流体应用于无锌负极水系锌碘全电池,在3 A·g-1电流密度下循环700圈后,容量保持率超过82%。本研究从晶体学与界面工程角度为高性能锌离子电池集流体的设计提供了新的机理见解与可行的改性策略。

关键词: 铜集流体, 锌碘电池, 晶面调控, 高温退火法

Abstract: Aqueous zinc-ion batteries hold considerable promise for grid-scale energy storage, capitalizing on their intrinsic safety, low cost, and environmental benignity. However, the practical deployment of these batteries is severely hampered by the uncontrollable growth of zinc dendrites on the anode during repeated plating/stripping cycles. As the substrate for zinc deposition, the interfacial properties of the current collector have a decisive impact on the zinc deposition behavior. Herein, we report a facile high-temperature annealing strategy to modulate the microstructure of a commercial copper current collector. This reconstruction profoundly influences the zinc deposition mechanism and electrochemical performance. The results demonstrate that annealing treatment induces significant crystallographic reconstruction of the copper current collector, resulting in a preferred orientation dominated by the (111) crystal plane, and effectively reducing the dislocation density and surface defects. Theoretical calculations reveal that the Cu(111) facet provides both a low diffusion barrier for zinc adatoms and the lowest interfacial energy with the Zn(002) plane. This synergistic thermodynamic and kinetic regulation promotes uniform and epitaxial zinc deposition, effectively suppressing dendrite formation and guiding the preferential growth of a (002)-textured zinc layer. Consequently, the modified current collector achieves exceptional plating/stripping reversibility, supporting a prolonged cycle life of over 4000 cycles with an average Coulombic efficiency of 99.9%. When applied to the aqueous zinc-iodine full battery with a zinc-free anode, it maintains a capacity retention rate of over 82% after 700 cycles at a current density of 3 A·g-1. This work provides fundamental insights and a practical strategy for the design of high-performance current collectors through crystallographic and interfacial engineering.

Key words: copper current collector, zinc-iodine batteries, facet control, high temperature annealing

中图分类号: