[1] XIANG H M, XING Y, DAI F Z,et al. High-entropy ceramics: present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10(3): 385. [2] OSES C, TOHER C, CURTAROLO S.High-entropy ceramics.Nature Reviews Materials, 2020, 5(4): 295. [3] LIU G A, FANG C, LI M L,et al. Breaking conventional understanding: superior oxidation resistance of a novel Ta and Mo containing high-entropy transition metal diboride. Journal of Materials Science & Technology, 2026, 252: 313. [4] ZHANG P, LIU X J, HE G Y,et al. Novel high-entropy ultra-high temperature ceramics with enhanced ablation resistance. Rare Metals, 2024, 43(12): 6559. [5] CHEN S, WANG T, WANG X L,et al. Structural origin of enhanced storage energy performance and robust mechanical property in A-site disordered high-entropy ceramics. Rare Metals, 2025, 44(1): 551. [6] CAO Z N, SUN J L, MENG L T,et al. Progress in densification and toughening of high entropy carbide ceramics. Journal of Materials Science & Technology, 2023, 161: 10. [7] LU K, LIU J X, WEI X F,et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. Journal of the European Ceramic Society, 2020, 40(5): 1839. [8] GUO W J, HU J, YE Y C,et al. Ablation behavior of (TiZrHfNbTa)C high-entropy ceramics with the addition of SiC secondary under an oxyacetylene flame. Ceramics International, 2022, 48(9): 12790. [9] 杜百合. ZrB2基超高温陶瓷的力学性能与热响应行为研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2021. [10] 罗嗣春. (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx基高熵碳化物陶瓷的制备与性能研究. 广州: 广东工业大学博士学位论文, 2022. [11] EVANS A G, CHARLES E A.Fracture toughness determinations by indentation.Journal of the American Ceramic Society, 1976, 59(7/8): 371. [12] LI J C, ZHANG Y L, ZHAO Y X,et al. A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 ℃. Composites Part B: Engineering, 2023, 251: 110467. [13] XIE F, YIN J, XIONG X,et al. High-temperature oxidation and ablation behavior of (Zr1/3Hf1/3Ti1/3)C ceramic. Journal of the European Ceramic Society, 2024, 44(16): 116784. [14] 王皓轩. 高熵碳化物基陶瓷的抗氧化和抗烧蚀性能研究. 西安: 西北工业大学博士学位论文, 2021. [15] 吕学文. 碳化硅纳米颗粒增韧碳化硅陶瓷的制备及力学性能研究. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2021. [16] SONG W Y, LU Y J, YANG L T,et al. Enhancement of densification and mechanical property of (Hf0.2Zr0.2Ti0.2Nb0.2Ta0.2)N high-entropy bulk ceramic via silicon carbide addition. Journal of Advanced Ceramics, 2025, 14(1): 9221004. [17] 魏红康, 张玉军, 邓翔宇. SiCp/B4C复合陶瓷的热压烧结及组织性能. 中国陶瓷, 2010, 46(9): 14. [18] LIU J X, HUANG X, ZHANG G J.Pressureless sintering of hafnium carbide-silicon carbide ceramics.Journal of the American Ceramic Society, 2013, 96(6): 1751. [19] GOGOTSI Y G.Particulate silicon nitride-based composites.Journal of Materials Science, 1994, 29(10): 2541. [20] WEN T Q, YE B L, NGUYEN M C,et al. Thermophysical and mechanical properties of novel high-entropy metal nitride-carbides. Journal of the American Ceramic Society, 2020, 103(11): 6475. [21] HAN X Q, LIN N, LI A Q,et al. Microstructure and characterization of (Ti, V, Nb, Ta)(C, N) high-entropy ceramic. Ceramics International, 2021, 47(24): 35105. [22] ZHOU Y Z, LUO S C, GUO W M,et al. Preparation of high-entropy (Ti, Nb, Ta, Mo, W)(C, N) ceramics via carbothermal reduction nitridation using different carbon source. Journal of the European Ceramic Society, 2024, 44(3): 1404. [23] 项铭禹. ZrC陶瓷及其复合材料的制备过程与机理研究. 武汉: 武汉理工大学博士学位论文, 2018. [24] CEDILLOS-BARRAZA O, GRASSO S, AL NASIRI N,et al. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC-HfC fabricated by spark plasma sintering. Journal of the European Ceramic Society, 2016, 36(7): 1539. [25] ZHANG S, WANG X H, ZHANG C,et al. Microstructure, elastic/mechanical and thermal properties of CrTaO4: a new thermal barrier material? Journal of Advanced Ceramics, 2024, 13(3): 373. [26] YE Z M, ZENG Y, XIONG X,et al. Elucidating the role of preferential oxidation during ablation: insights on the design and optimization of multicomponent ultra-high temperature ceramics. Journal of Advanced Ceramics, 2022, 11(12): 1956. [27] 彭峥. 超高温碳氮化铪陶瓷及其复合材料设计制备与抗烧蚀性能. 长沙: 中南大学博士学位论文, 2022. [28] 谢冯旻煜. 多元超高温碳化物陶瓷氧化和烧蚀性能研究. 长沙: 中南大学硕士学位论文, 2023. [29] YANG L Y, DONG S, CUI T Y,et al. Novel gradient ZrB2-MoSi2-SiC dense layer with enhanced emissivity and long-term oxidation resistance at ultra-high temperatures. Rare Metals, 2025, 44(3): 2043. [30] 李夏菲. 防隔热一体化C/C-SiCO多孔陶瓷复合材料的制备与性能研究. 长沙: 国防科技大学博士学位论文, 2019. [31] 伦惠林. 多元单相碳化物与含硼碳化物陶瓷的制备和抗氧化性能. 长沙: 中南大学博士学位论文, 2022. [32] WANG Y C, WANG X C, LI S W,et al. Improved oxidation resistance of (Zr-Nb-Hf-Ta)(C, N) high entropy carbonitrides. Corrosion Science, 2023, 225: 111583. [33] CAI F Y, NI D W, CHEN B W,et al. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis. Journal of the European Ceramic Society, 2021, 41(12): 5863. [34] WANG Y C, ZHANG B H, ZHANG C Y,et al. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 ℃. Journal of Materials Science & Technology, 2022, 113: 40. [35] CHEN Z Z, WANG H X, LI C R,et al. Oxyacetylene ablation of (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C at 1350-2050 ℃. Journal of the European Ceramic Society, 2023, 43(6): 2700. [36] LV J S, LI W, LI T,et al. Ablation behavior of high-entropy boride (Hf-Zr-Ta-Ti)B2 coating fabricated via supersonic atmospheric plasma spraying for carbon/carbon composites. Composites Part B: Engineering, 2024, 270: 111137. |