无机材料学报

• • 上一篇    下一篇

SiC颗粒含量对(Ti,Zr,Hf,Ta,Cr)(C,N)-SiC陶瓷力学性能及耐烧蚀性能的影响

彭裕超1, 董源1, 董顺1, 夏莲森1, 胡佩涛1, 张幸红1, 周延春2   

  1. 1.哈尔滨工业大学 航天学院, 复合材料与结构研究所, 哈尔滨 150001;
    2.苏州实验室, 苏州 215123
  • 收稿日期:2025-10-21 修回日期:2025-12-17
  • 通讯作者: 董 顺, 教授. E-mail: dongshun@hit.edu.cn
  • 作者简介:彭裕超(1999-), 男, 博士研究生. E-mail:pycuchao@stu.hit.edu.cn
  • 基金资助:
    国家自然科学基金(52272060, 52522203); 国家自然科学基金重点项目(52032003); 中央高校基本科研业务费专项资金(FRFCU5710050424)

Effect of SiC Particle Content on Mechanical Properties and Ablation Resistance of (Ti,Zr,Hf,Ta,Cr)(C,N)-SiC Ceramics

PENG Yuchao1, DONG Yuan1, DONG Shun1, XIA Liansen1, HU Peitao1, ZHANG Xinghong1, ZHOU Yanchun2   

  1. 1. Center for Composite Materials and Structure, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. Suzhou Laboratory, Suzhou 215123, China
  • Received:2025-10-21 Revised:2025-12-17
  • Contact: DONG Shun, professor. E-mail: dongshun@hit.edu.cn
  • About author:PENG Yuchao (1999-), male, PhD candidate. E-mail:pycuchao@stu.hit.edu.cn
  • Supported by:
    National Natural Science Foundation of China (52272060, 52522203); National Key R&D Program of China (52032003); Fundamental Research Funds for the Central Universities (FRFCU5710050424)

摘要: 多主元碳氮化物超高温陶瓷与传统体系相比具有更优异的高温稳定性及耐烧蚀性能, 但该类材料存在的本征脆性问题限制了其广泛应用。本研究通过引入第二相SiC颗粒(SiCp), 采用机械合金化/原位氮化法结合放电等离子烧结技术制备了(Ti,Zr,Hf,Ta,Cr)(C,N)-SiC复相陶瓷, 并系统研究了SiCp引入量对材料力学性能和耐烧蚀性能的影响规律。结果表明, 引入SiCp有效提升了材料的力学性能, 当SiCp的体积分数为20%时, 材料的断裂韧性达到(5.18±0.24) MPa·m1/2, 相比(Ti,Zr,Hf,Ta,Cr)(C,N)陶瓷提升了31.5%, 其断裂韧性提升可归因于引入SiCp所诱导的裂纹偏转与分叉等增韧机制。进一步对材料进行2100 ℃/120 s氧-乙炔焰流考核, 结果表明, 引入SiCp还有效提升了材料的耐烧蚀性能。当SiCp体积分数为20%时, 材料的耐烧蚀性能最佳, 其质量烧蚀率与线烧蚀率达到-0.92 mg/s和-1.17 μm/s, 优于多数已报道的传统超高温陶瓷。其耐烧蚀性能的提升可归因于高熔点复合氧化物骨架对低熔点SiO2流动相的钉扎作用, 以及两者协同形成的多元致密氧化物保护膜对氧扩散的抑制作用。上述结果表明, 引入适量SiCp可有效解决多主元碳氮化物超高温陶瓷本征脆性难题, 协同提升材料力学与耐烧蚀性能, 相关成果可为新一代高性能热防护材料研制提供理论基础与数据支撑。

关键词: 多主元碳氮化物陶瓷, SiC颗粒, 力学性能, 耐烧蚀性能

Abstract: Compared to conventional ultra-high temperature ceramics (UHTCs), multi-principal carbonitride UHTCs exhibit superior high-temperature stability and ablation resistance. However, the inherent brittleness of these materials poses a significant constraint on their widespread applications. To overcome this drawback, in this study, (Ti,Zr,Hf,Ta,Cr)(C,N)-SiC ceramics were fabricated by combining mechanical alloying/nitridation with spark plasma sintering through the introduction of a second-phase SiC particles (SiCp) into the system, and influence of different SiCp contents on the mechanical properties and ablation resistance of the materials was systematically investigated. The results indicate that incorporation of SiCp effectively enhances the mechanical properties of the materials. When the volume fraction of SiCp reaches 20%, the fracture toughness achieves (5.18±0.24) MPa·m1/2, representing a substantial enhancement of 31.5% compared to the (Ti,Zr,Hf,Ta,Cr)(C,N) ceramic. This improvement in fracture toughness can be attributed to toughening mechanisms including crack deflection and branching owing to the introduction of SiCp. Further oxygen-acetylene ablation tests at 2100 ℃ for 120 s demonstrate that incorporation of SiCp also significantly enhances the ablation resistance of the material. The optimal performance is achieved at a SiCp volume fraction of 20%, with a mass ablation of -0.92 mg/s and a linear ablation of -1.17 μm/s, outperforming most reported conventional UHTCs. The enhancement in ablation resistance can be attributed to the pinning effect exerted by a high-melting-point multicomponent oxide skeleton on the low-melting-point SiO2 phase, as well as the synergistic formation of a multicomponent dense oxide barrier that effectively suppresses oxygen diffusion. This work presents a strategy to resolve the intrinsic brittleness of multi-principal carbonitride UHTCs through the optimal incorporation of SiCp, which concurrently improves the mechanical properties and ablation resistance. These results provide a theoretical foundation and experimental data for the design of advanced thermal protection materials.

Key words: multi-principal carbonitride ceramic, SiC particle, mechanical property, ablation resistance

中图分类号: