无机材料学报

• • 上一篇    

3D打印制备CNT/SiC-SiO2及其电磁屏蔽性能研究

王萌萌1,2,3, 田力2,3, 张俊敏1, 李庆刚1, 杨金山2,3, 董绍明2,3,4   

  1. 1.苏州实验室,苏州 215123;
    2.中国科学院 上海硅酸盐研究所, 关键陶瓷材料全国重点实验室, 上海 200050;
    3.中国科学院 上海硅酸盐研究所, 结构陶瓷与复合材料工程研究中心, 上海 20005;
    4.中国科学院大学 材料与光电研究中心, 北京 100049
  • 收稿日期:2025-10-13 修回日期:2025-11-17
  • 作者简介:王萌萌(1997-), 女, 博士. E-mail: wangmm@szlab.ac.cn

Highly Efficient EMI Shielding via 3D-Printed CNT/SiC-SiO2 Architectures

WANG Mengmeng1,2,3, TIAN Li2,3, ZHANG Junmin1, LI Qinggang1, YANG Jinshan2,3, DONG Shaoming2,3,4   

  1. 1. Suzhou Laboratory, Suzhou 215123, China;
    2. State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    3. Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-10-13 Revised:2025-11-17
  • About author:WANG Mengmeng(1997–), female, PhD. E-mail: wangmm@szlab.ac.cn
  • Supported by:
    National Natural Science Foundation of China (52222202, 52502107); Shanghai Pilot Program for Basic Research - Chinese Academy of Science, Shanghai Branch (JCYJ-SHFY-2021-001)

摘要: 兼具轻质、优异力学性能和高电磁屏蔽效能的材料对下一代电子与通信系统的开发至关重要。本研究报道了一种组分可控且具有多级结构的CNT/PDMS复合材料,并通过3D打印方法设计和制备了该材料。所得材料表现出卓越的机械性能,可承受高达自身重量250倍的载荷,并在40%应变后完全恢复原状。在惰性气氛下热解过程中,PDMS基体分解并转化为SiC-SiO2陶瓷相,包裹碳纳米管(CNT)网络,形成具有多级多孔和多相结构的复合材料。CNT/SiC-SiO2复合材料在X波段(8-12 GHz)展现出高达62 dB的优异电磁屏蔽效能,其中电磁吸收占主导(SEA = 59.91 dB)。这种高吸收能力源于多种协同效应,包括优化阻抗匹配、导电损耗、界面/偶极极化以及在多级多孔、多界面结构内的多次反射。“吸收-反射-再吸收”机制实现了对入射电磁波近乎完全的衰减。本工作提出了一种基于3D打印的可扩展策略,用于制备卓越电磁屏蔽性能的碳-陶瓷复合材料,可满足航空航天、可穿戴电子器件和军事领域的应用需求。

关键词: 电磁干扰, 3D打印, 多孔CNT/SiC-SiO2陶瓷, 电磁屏蔽吸收机制

Abstract: The development of lightweight, mechanically robust, and high-performance electromagnetic interference (EMI) shielding materials is critical for next-generation electronic and communication systems. In this study, we report the design and fabrication of a 3D-printed CNT/PDMS composite with tunable composition and hierarchical architecture. The resulting composite exhibits exceptional mechanical resilience, supporting loads up to 250 times its own weight and recovering fully after experiencing 40% strain. During pyrolysis in an inert atmosphere, the PDMS matrix decomposes and transforms into a SiC-SiO2 ceramic phase that encapsulates the CNT network, thereby forming a hierarchically porous, multi-phase architecture. Notably, the CNT/SiC-SiO2 composite demonstrates outstanding EMI shielding effectiveness (SE) of 62 dB in the X-band (8-12 GHz), primarily attributed to absorption (SEA = 59.91 dB). This elevated absorption capability arises from synergistic effects including improved impedance matching, conduction loss, interfacial/dipole polarization, and multiple internal reflections within the hierarchically porous, multi-interface architecture. The “absorption-reflection-reabsorption” mechanism enables near-complete attenuation of incident electromagnetic waves. This work presents a scalable, 3D-printing-enabled strategy for fabricating multifunctional carbon-ceramic composites with superior EMI shielding performance, which can meet the requirement of aerospace, wearable electronics, and military applications.

Key words: electromagnetic interference, 3D printing, porous CNT/SiC-SiO2 ceramic, EMI absorption mechanism

中图分类号: