无机材料学报

• • 上一篇    

电极图案及其连接设计对KTP晶体周期极化的调控研究

谭婷婷1, 宋旭东2,3,4, 赵炜迪2,3,4, 覃祺1, 何小玲2,3,4, 张昌龙1,2,3,4   

  1. 1.桂林电子科技大学 材料科学与工程学院,桂林 541000;
    2.桂林百锐光电技术有限公司,桂林 541000;
    3.广西超硬材料重点实验室,桂林 541000;
    4.中国有色桂林矿产地质研究院有限公司,桂林 541000
  • 收稿日期:2025-09-29 修回日期:2025-10-23
  • 通讯作者: 张昌龙, 教授. E-mail: 573370768@qq.com; 何小玲, 教授. E-mail: hxlpl@hotmail.com
  • 作者简介:谭婷婷(2000-), 女, 硕士研究生. E-mail: 1441232713@qq.com
  • 基金资助:
    广西科技计划项目(2023AB10008; 2023AB01273); 中国有色矿业集团科技计划项目(2023KJZX007)

Regulation of Periodic Poling in KTP Crystals via Electrode Pattern and Connection Design

TAN Tingting1, SONG Xudong2,3,4, ZHAO Weidi2,3,4, QIN Qi1, HE Xiaoling2,3,4, ZHANG Changlong1,2,3,4   

  1. 1. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541000, China;
    2. Guilin Bairay Photoelectric Technology Co., Ltd., Guilin 541000, China;
    3. Guangxi Key Laboratory of Superhard Materials, Guilin 541000, China;
    4. China Nonferrous Metal (Guilin) Geology and Mining Co., Ltd., Guilin 541000, China
  • Received:2025-09-29 Revised:2025-10-23
  • Contact: ZHANG Changlong, professor. E-mail: 573370768@qq.com; HE Xiaoling, professor. E-mail: hxlpl@hotmail.com
  • About author:TAN Tingting (2000-), male, Master candidate. E-mail: 1441232713@qq.com
  • Supported by:
    Science and Technology Program of Guangxi Province (2023AB10008; 2023AB01273); Science Technology Project of China Nonferrous Metal Mining Group (2023KJZX007)

摘要: 基于磷酸钛氧钾晶体铁电畴结构设计获得的周期极化KTP(PPKTP)晶体,凭借其产生的纠缠光子源具有低功耗、小体积、高纠缠品质等优越性能,逐渐成为了量子光学中产生纠缠量子光源的核心元器件。在用电场极化法制备PPKTP晶体时,非均匀电场会导致不规则的畴结构,进而对非线性光学性能产生不利影响,因此电场的均匀性是极化过程的核心控制要素。为提升PPKTP晶体极化过程中电场的均匀性,本研究通过优化电极图案与电极连接结构,开展了系统的仿真与实验验证。基于有限元分析,对不同电极图案结构的空间电场分布进行了模拟,提出了一种双边圆角电极图案以减轻边缘电场集中;同时,提出了一种并联多触点电极连接方式,以进一步优化电场分布的均匀性。并用金相显微镜对极化晶体的畴结构进行了表征,通过对晶体铁电畴形貌的实验验证发现双边圆角结构的电极图案能够有效减轻尖端效应,而并联式多触点电极连接方式能够明显提升电场的均匀性,从而为获得高质量的反转畴提供了关键条件,最终得到了畴壁平直,周期为46 μm占空比约为(50±1)%的水热法PPKTP晶体。本工作为PPKTP制备过程中的电场均匀化设计提供了一种简便、高效且结构合理的设计方案。

关键词: 磷酸钛氧钾, 周期极化磷酸钛氧钾, 有限元分析, 电场分布

Abstract: Periodically poled potassium titanyl phosphate (PPKTP) crystals, engineered based on the ferroelectric domain structure of KTP, have emerged as a core component for generating entangled quantum light sources in quantum optics. This is attributed to the entangled photon sources they produce, which exhibit superior performance such as low power consumption, compact size, and high entanglement quality. During the preparation of PPKTP crystals via the electric field poling method, inhomogeneous electric fields can lead to irregular domain structures, adversely affecting their nonlinear optical properties. Therefore, electric field uniformity is a critical control factor in the poling process. To improve the electric field homogeneity during the polarization of PPKTP crystals, this study systematically optimized both the electrode pattern and the electrode connection structure through simulation and experimental validation. Using finite element analysis, the spatial electric field distributions of different electrode patterns were simulated. A double-sided rounded electrode pattern was proposed to mitigate edge electric field concentration, while a parallel multi-contact electrode connection method was introduced to further enhance the uniformity of the electric field distribution. The domain structures of the poled crystals were characterized using metallographic microscopy. Experimental results from the ferroelectric domain morphology analysis confirmed that the double-sided rounded electrode pattern effectively alleviates the tip effect, and the parallel multi-contact connection method significantly improves electric field uniformity, thereby providing key conditions for high-quality domain inversion. Ultimately, hydrothermally grown PPKTP crystals were obtained with straight domain walls, a period of 46 μm, and a duty cycle of approximately (50±1)%. This work offers a simple, efficient, and structurally rational design solution for achieving uniform electric field distribution in the preparation of PPKTP crystals.

Key words: KTiOPO4, PPKTP, finite element analysis, electric field spatial distribution

中图分类号: