无机材料学报

• •    

自研正仲氢转化催化剂的催化测试分析及批量制备工艺优化

李娜1, 魏进1, 曹锐霄1,2, 刘玉1, 黄贵文1, 肖红梅1   

  1. 1.中国科学院 理化技术研究所, 低温科学与技术全国重点实验室, 北京 100190;
    2.中国科学院大学, 北京 101408
  • 收稿日期:2025-09-26 修回日期:2025-11-26
  • 通讯作者: 肖红梅, 研究员. E-mail: hmxiao@mail.ipc.ac.cn
  • 作者简介:李 娜(1987-), 女, 博士. E-mail: lina110@mail.ipc.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFB4000700);中国科学院稳定支持基础研究领域青年团队计划(YSBR-017)

Catalytic Testing and Optimization of Batch Preparation Process for Self-developed Ortho-para Hydrogen Conversion Catalyst

LI Na1, WEI Jin1, CAO Ruixiao1,2, LIU Yu1, HUANG Guiwen1, XIAO Hongmei1   

  1. 1. State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-09-26 Revised:2025-11-26
  • Contact: XIAO Hongmei, professor. E-mail: hmxiao@mail.ipc.ac.cn
  • About author:LI Na (1987-), female, PhD. E-mail: lina110@mail.ipc.ac.cn
  • Supported by:
    National Key R&D Program of China (2021YFB4000700); Project of Stable Support for Youth Team in Basic Research Field of Chinese Academy of Sciences, China (YSBR-017)

摘要: 正仲氢转化催化剂是大型氢液化工程中的关键材料之一。近年来, 研究大多聚焦于提升现有体系的低温催化活性, 而准确测量仲氢含量则是研究的基础。然而, 目前仅有少数研究以及相关行业规范对仲氢分析的测试精度与可靠性进行报道。除此之外, 批量生产的相关工艺研究报道仍是少之又少, 而在此基础上通过工艺优化指导批量催化剂的生产对于打破进口依赖尤为重要。本研究从正仲氢转化催化剂的催化测试分析和批量制备工艺优化两方面进行探讨。首先证明了所研制的测试平台获得的实验结果稳定性好、测量精度高, 在此基础上通过催化性能和机械强度的综合对比, 确定了使产率最大化的最优批量生产工艺组合, 并通过低温活化再激活、粒径优化、二次洗涤等操作, 均对批量制备工艺进行优化, 获得催化活性更优的催化剂产品。结果表明, 自研催化剂2#样品(直接粉碎经0.8 mm筛网筛分、二次洗涤并低温活化)在空速为1.2 L/(min·mL)条件下的催化性能比进口催化剂高约3.4%, 相应的转化率和反应速率常数k值分别比进口催化剂高约7.42%和25.78%。本研究证明了通过批量化制备亦能获得性能优异的正仲氢转化催化剂, 为国产化替代提供了重要的应用支撑。

关键词: 正仲氢转化, 催化剂, 测试分析, 低温催化活性, 批量生产工艺

Abstract: Ortho-para hydrogen conversion catalyst (OPC) is one of the key materials in large-scale hydrogen liquefaction projects. In recent years, research has primarily focused on enhancing the low-temperature catalytic activity of existing systems, while the accurate measurement of para-hydrogen content has become the foundation of such studies. However, only a limited number of studies and relevant industry standards have reported on the testing accuracy and reliability of para-hydrogen analysis, and reports on the batch preparation process remain scarce. Optimizing these processes to guide mass production is particularly crucial for reducing reliance on imported catalysts. This study explores both the catalytic testing analysis and the optimization of mass production processes for OPC. It not only demonstrates the stability and high measurement accuracy of the experimental results obtained from the self-developed testing platform, but also identifies the optimal mass production process combination to maximize yield through a comprehensive comparison of catalytic performance and mechanical strength. Furthermore, process optimizations such as low-temperature activation, particle size optimization, and secondary washing are implemented to produce catalysts with superior catalytic activity. The results show that the self-developed catalyst 2# with primary crushing, sieving through a 0.8 mm sieve, washing and low-temperature activation exhibits approximately 3.4% higher catalytic performance than imported catalysts at a space velocity of 1.2 L/(min·mL), with corresponding conversion rate and reaction rate constant (k value) approximately 7.42% and 25.78% higher, respectively. This study demonstrates that the self-developed catalysts with excellent performance can be achieved through batch preparation, providing critical support for domestic substitution.

Key words: ortho-para hydrogen conversion, catalyst, testing analysis, low-temperature catalytic activity, batch