无机材料学报

• 研究论文 •    

钴-镁协同纳米洋葱碳催化剂的制备及低温催化氨分解制氢性能研究

薛新燕1,2, 张晓卫1,2, 鲁恒1,2, 李世杰1,2, 张卫珂1,2, 曾少华2,3   

  1. 1.太原理工大学 材料科学与工程学院,太原 030024;
    2.中新国际联合研究院, 广州 510555;
    3.南洋理工大学 机械与航空航天工程学院,新加坡 639798
  • 收稿日期:2025-05-15 修回日期:2025-09-23
  • 通讯作者: 张卫珂, 副教授. E-mail: zhangweike@tyut.edu.cn
  • 作者简介:薛新燕(2000-), 女, 硕士研究生. E-mail: 17336334425@163.com
  • 基金资助:
    山西省自然科学基金(202103021224071); 海事转型计划创新孵化基金(SMI-2023-MTP-02)

Preparation of Co-Mg Synergistic Carbon Nano Onions Catalyst and Low-Temperature Catalytic Hydrogen Production from Ammonia Decomposition

XUE Xinyan1,2, ZHANG Xiaowei1,2, LU Heng1,2, LI Shijie1,2, ZHANG Weike1,2, CHAN Siewhwa2,3   

  1. 1. School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510555, China;
    3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Received:2025-05-15 Revised:2025-09-23
  • Contact: ZHANG Weike, associate professor. E-mail: zhangweike@tyut.edu.cn
  • About author:XUE Xinyan (2000-), female, Master candidate. E-mail: 17336334425@163.com
  • Supported by:
    Natural Science Foundation of Shanxi Province (202103021224071); Maritime Transformation Programme White Space (SMI-2023-MTP-02)

摘要: 氨分解制氢作为一种极具前景的氢气制备方法,其关键在于开发具有高活性、高选择性和低成本的中低温催化剂。本研究以甲烷850 ℃裂解制氢副产物纳米洋葱碳(CNOs)为载体,采用均匀沉积沉淀法负载活性金属钴(Co),并引入碱金属氧化镁(MgO)作助剂,成功制备了高性能氨分解催化剂。通过系统研究酸洗及钾(K)活化处理对CNOs载体形貌的调控作用,深入探究了其对催化剂性能的影响机制。结合多种表征与化学吸附实验,证实催化剂碱性强度与其氨分解性能呈正相关。引入CNOs显著提升了催化剂的电子导电性,并促进了Co₂MgO₄纳米颗粒在载体上的均匀分散。这种均匀分散增加了碱性活性位点的暴露度,从而增强了催化剂表面对氨分子的吸附能力。酸洗处理在CNOs表面引入了更多含氧官能团,这些官能团可作为锚定位点,与Co²⁺或Mg²⁺形成强化学键(配位键或离子键),进而稳定Co₂MgO₄颗粒。这种强相互作用提高了金属氧化物的还原难度,导致其还原温度升高。催化性能测试表明,CNOs、MgO、K和Co的协同作用显著优化了催化剂的结构特性、金属粒径及催化性能。在一系列合成催化剂中,Co2Mg/K-CNO’展现出最优异的氨分解催化活性,在12000 mL·gcat-1·h-1、550 ℃条件下氨转化率为99.6%。

关键词: 氨分解, 催化剂, 纳米洋葱碳, 酸洗, 碱度, 金属-载体相互作用

Abstract: The decomposition of ammonia for hydrogen production is a promising method, with the key challenge being the development of low-cost, highly active, and selective catalysts that operate at moderate temperatures. In this study, carbon nano-onions (CNOs), a byproduct of methane pyrolysis at 850 ℃, were used as a support for loading active metal cobalt (Co) via a uniform deposition-precipitation method. Additionally, magnesium oxide (MgO) was introduced as a promoter to successfully prepare a high-performance ammonia decomposition catalyst. A systematic investigation was conducted on the effects of acid washing and potassium (K) activation treatments on the morphology of the CNOs support, leading to an in-depth exploration of their influence mechanisms on catalyst performance. Various characterization and chemical adsorption experiments confirmed a positive correlation between the basicity strength of the catalyst and its ammonia decomposition performance. It was revealed that the incorporation of CNOs significantly enhanced the electronic conductivity of the catalyst and facilitated the uniform dispersion of Co₂MgO₄ nanoparticles on the support. This uniform dispersion increased the exposure of basic active sites, thereby enhancing the catalyst's ability to adsorb ammonia molecules. The acid washing treatment introduced more oxygen-containing functional groups on the surface of CNOs, which acted as anchoring sites and formed strong chemical bonds (coordination or ionic bonds) with Co²⁺ or Mg²⁺, thus stabilizing Co₂MgO₄ particles. This strong interaction increased the reduction difficulty of the metal oxides, leading to an elevated reduction temperature. Catalytic performance tests demonstrated that the synergistic effect of CNOs, MgO, K, and Co significantly optimized the structural characteristics, metal particle size, and catalytic performance of the catalyst. Among a series of synthesized catalysts, Co₂Mg/K-CNO’ exhibited the best catalytic activity for ammonia decomposition, achieving a conversion rate of 99.6% at 550 ℃ and a space-time yield of 12000 mL·gcat-1·h-1.

Key words: ammonia decomposition, catalyst, carbon nano-onion, acid washing, alkalinity, metal-support interaction

中图分类号: