• •
李璇1,2, 叶奎材1, 冯佳音1, 邱家军3, 钱文昊1, 邢敏1
收稿日期:
2025-04-07
修回日期:
2025-06-05
通讯作者:
邢 敏, 副研究员. E-mail: xingmin0821@126.com;钱文昊, 主任医师. E-mail: pingyanlaoto@163.com
作者简介:
李 璇 (2000-), 女, 硕士研究生. E-mail: 2233092@mail.dhu.edu.cn
基金资助:
LI Xuan1,2, YE Kuicai1, FENG Jiayin1, QIU Jiajun3, QIAN Wenhao1, XING Min1
Received:
2025-04-07
Revised:
2025-06-05
Contact:
XING Min, associate professor. E-mail: xingmin0821@126.com; QIAN Wenhao, chief physician. E-mail: pingyanlaoto@163.com
About author:
LI Xuan (2000–), female, Master candidate. E-mail: 2233092@mail.dhu.edu.cn
Supported by:
摘要: 钛及钛合金因其优异的力学性能、耐腐蚀性和生物相容性,被广泛用作牙种植体材料。然而钛基牙种植体在临床使用中因软组织封闭不佳,细菌容易侵入诱发种植体周炎,导致种植体植入手术失败。因此,为钛基牙种植体赋予软组织封闭能力以有效降低种植体植入手术的失败率,国内外研究者对此作了持续、深入的研究。本文综述了近年来钛基牙种植体软组织封闭表面改性研究系列进展,着重介绍了钛表面化学组分调控和微纳结构构建方法,指出了钛基牙种植体软组织封闭表面改性研究中尚存的挑战以及未来发展趋势,以期为钛基牙种植体软组织封闭研究提供参考。
中图分类号:
李璇, 叶奎材, 冯佳音, 邱家军, 钱文昊, 邢敏. 钛基牙种植体表面改性促进软组织封闭的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250144.
LI Xuan, YE Kuicai, FENG Jiayin, QIU Jiajun, QIAN Wenhao, XING Min. Surface Modification of Titanium-based Dental Implants for Soft Tissue Sealing: A Review[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250144.
[1] AGARWAL S, MISTRY L, MISTRY S,et al. The per-ingvar Brånemark era (1929-2014): evolution of a No compromise prosthetic dental replacement. Cureus, 2024, 16(10): e71708. [2] SAFAEI M, MOHAMMADI H, BEDDU S,et al. Surface topography steer soft tissue response and antibacterial function at the transmucosal region of titanium implant. International Journal of Nanomedicine, 2024, 19: 4835. [3] WU X Q, LI L Q, TAO W,et al. Built-up sodium alginate/chlorhexidine multilayer coating on dental implants with initiating anti-infection and cyto-compatibility sequentially for soft-tissue sealing. Biomaterials Advances, 2023, 151: 213491. [4] SHRIVAS S, SAMAUR H, YADAV V,et al. Soft and hard tissue integration around percutaneous bone-anchored titanium prostheses: toward achieving holistic biointegration. ACS Biomaterials Science & Engineering, 2024, 10(4): 1966. [5] YU C, YU Y, LU Y,et al. UiO-66/AgNPs coating for dental implants in preventing bacterial infections. Journal of Dental Research, 2024, 103(5): 516. [6] ABDALLAH M N, BADRAN Z, CIOBANU O,et al. Strategies for optimizing the soft tissue seal around osseointegrated implants. Advanced Healthcare Materials, 2017, 6:1700549. [7] SUN X D, LIU T T, WANG Q Q,et al. Surface modification and functionalities for titanium dental implants. ACS Biomaterials Science & Engineering, 2023, 9(8): 4442. [8] BERNABE E, MARCENES W, CR Hernandez,et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. Journal of Dental Research, 2020, 99(4): 362. [9] SOUZA J G S, BERTOLINI M M, COSTA R C,et al. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience, 2021, 24(1): 102008. [10] JIA B, ZHANG B B, LI J H,et al. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chemical Society Reviews, 2024, 53(7): 3273. [11] MOUNTCASTLE S E, COX S C, SAMMONS R L,et al. A review of co-culture models to study the oral microenvironment and disease. Journal of Oral Microbiology, 2020, 12(1): 177322 [12] CHANDRA NAYAK S, LATHA P B, KANDANATTU B,et al. The oral microbiome and systemic health: bridging the gap between dentistry and medicine. Cureus, 2025, 17(2): e78918. [13] CUI Z W, WANG P, GAO W Y.Microbial dysbiosis in periodontitis and peri-implantitis: pathogenesis, immune responses, and therapeutic.Frontiers in Cellular and Infection Microbiology, 2025, 15: 1517154. [14] INCHINGOLO F, INCHINGOLO A M, MALCANGI G,et al. The benefits of probiotics on oral health: systematic review of the literature. Pharmaceuticals, 2023, 16(9): 1313. [15] MARK WELCH J L, RAMÍREZ-PUEBLA S T, BORISY G G. Oral microbiome geography: micron-scale habitat and niche.Cell Host & Microbe, 2020, 28(2): 160. [16] GAO H, JIANG N, NIU Q N,et al. Biocompatible nanostructured silver-incorporated implant surfaces show effective antibacterial, osteogenic, and anti-inflammatory effects in vitro and in rat model. International Journal of Nanomedicine, 2023, 18: 7359. [17] MONJE A, NART J.Management and sequelae of dental implant removal.Periodontology 2000, 2022, 88(1): 182 [18] GUO T Q, GULATI K, ARORA H,et al. Race to invade: understanding soft tissue integration at the transmucosal region of titanium dental implants. Dental Materials, 2021, 37(5): 816. [19] WANG M, LIU Y B, TONG W M,et al. Periodontitis history shapes the early peri-implant microbiome formation: a metagenomic analysis. Journal of Clinical Periodontology, 2025, 52(7): 1011. [20] CINQUINI C, MARCHIO V, DI DONNA E,et al. Histologic evaluation of soft tissues around dental implant abutments: a narrative review. Materials, 2022, 15(11): 3811. [21] MATHUR A, KHARBANDA O P, KOUL V,et al. Fabrication and evaluation of antimicrobial biomimetic nanofiber coating for improved dental implant bioseal: an in vitro study. Journal of Periodontology, 2022, 93(10): 1578. [22] DENG Z M, LIANG J, FANG N,et al. Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. International Journal of Biological Macromolecules, 2022, 208: 833 [23] WALKO G, CASTAÑÓN M J, WICHE G. Molecular architecture and function of the hemidesmosome.Cell and Tissue Research, 2015, 360(2): 363. [24] YANG J, ZHANG Z H, YAO W H,et al. Recent developments in coatings on biodegradable Mg alloys: a review. Journal of Magnesium and Alloys, 2025, 13(4): 1405. [25] SÁNCHEZ-BODÓN J, ANDRADE DEL OLMO J, ALONSO J M,et al. Bioactive coatings on titanium: a review on hydroxylation, self-assembled monolayers (SAMs) and surface modification strategies. Polymers: Basel, 2021, 14(1): 165. [26] QIU W Z, YANG H C, XU Z K.Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification.Advances in Colloid and Interface Science, 2018, 256: 111. [27] LI D Z, TAN X, ZHENG L W,et al. A dual-antioxidative coating on transmucosal component of implant to repair connective tissue barrier for treatment of peri-implantitis. Advanced Healthcare Materials, 2023, 12(30): 2301733. [28] LIU R H, CHEN S C, HUANG P N,et al. Immunomodulation-based strategy for improving soft tissue and metal implant integration and its implications in the development of metal soft tissue materials. Advanced Functional Materials, 2020, 30(21): 1910672. [29] XIE X Y, TANG J, XING Y X,et al. Intervention of polydopamine assembly and adhesion on nanoscale interfaces: state-of-the-art designs and biomedical applications. Advanced Healthcare Materials, 2021, 10(9): 2002138. [30] LI W, YANG Y W, ZHANG H C,et al. Improvements on biological and antimicrobial properties of titanium modified by AgNPs-loaded chitosan-heparin polyelectrolyte multilayers. Journal of Materials Science. Materials in Medicine, 2019, 30(5): 52. [31] 杜佳恒, 范鑫丽, 肖东琴, 等. 钛表面电化学沉积氢氧化镁与氧化镁涂层的抗菌性能与生物活性. 硅酸盐学报, 2024, 52(5): 1570. [32] YI J L, LI M, ZHU J X,et al. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. Journal of Materials Chemistry B, 2024, 12(39): 9863. [33] GRIGORIEV S, SOTOVA C, VERESCHAKA A,et al. Modifying coatings for medical implants made of titanium alloys. Metals, 2023, 13(4): 718. [34] TRUC N T, MINH H H, KHANH L L,et al. Modification of type I collagen on TiO2 surface using electrochemical deposition. Surface and Coatings Technology, 2018, 344: 664. [35] GUO T Q, SCIMECA J C, IVANOVSKI S,et al. Enhanced corrosion resistance and local therapy from nano-engineered titanium dental implants. Pharmaceutics, 2023, 15(2): 315. [36] MELENTIEV R, YUDHANTO A, TAO R,et al. Metallization of polymers and composites: state-of-the-art approaches. Materials & Design, 2022, 221: 110958. [37] RATHA I, DATTA P, BALLA V K,et al. Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: a review. Ceramics International, 2021, 47(4): 4426. [38] LUO Y, GAO L P, HU J Q,et al. Mechanical properties and in vitro human gingival fibroblasts compatibility of plasma-sprayed zirconia-coated titanium alloy abutment. Materials Letters, 2022, 324: 132702. [39] WANG F F, LI C J, ZHANG S,et al. Tantalum coated on titanium dioxide nanotubes by plasma spraying enhances cytocompatibility for dental implants. Surface and Coatings Technology, 2020, 382: 125161. [40] WANG Q, TANG Z L, HEROUT R,et al. Axial suspension plasma sprayed Ag-TiO2 coating for enhanced photocatalytic and antimicrobial properties. Surfaces and Interfaces, 2024, 45: 103856. [41] 夏超, 钱仕, 王东辉, 等. 碳离子注入医用Ti性能研究. 金属学报, 2017, 53(10): 1393. [42] TIAN X, ZHANG P, XU J.Incorporating zinc ion into titanium surface promotes osteogenesis and osteointegration in implantation early phase.Journal of Materials Science. Materials in Medicine, 2023, 34(11): 55. [43] ZHOU J J, WU Y H, TAN J,et al. Constructing hydroxylated graphite-like film with protein regulation on PEEK for integrated bone-soft tissue therapy. Advanced Functional Materials, 2025: 2423821. [44] LIN Z J, WU S L, LIU X Y,et al. A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomaterialia, 2019, 99: 495. [45] ZHU Y, ZHANG C N, GU Y X,et al. The responses of human gingival fibroblasts to magnesium-doped titanium. Journal of Biomedical Materials Research Part A, 2020, 108(2): 267. [46] SHIAU D K, YANG C H, SUN Y S,et al. Enhancing the blood response and antibacterial adhesion of titanium surface through oxygen plasma immersion ion implantation treatment. Surface and Coatings Technology, 2019, 365: 173. [47] OSHIRO W, AYUKAWA Y, ATSUTA I,et al. Effects of CaCl2 hydrothermal treatment of titanium implant surfaces on early epithelial sealing. Colloids and Surfaces B: Biointerfaces, 2015, 131: 141. [48] SHI X L, XU L L, MUNAR M L,et al. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response. Materials Science & Engineering. C, Materials for Biological Applications, 2015, 49: 1. [49] MA L, WANG C S, MA Y,et al. Achieving high strength and ductility in laser powder bed fusion-manufactured pure titanium through the addition of carbon nanotubes. Rare Metals, 2025, 44(6): 4149. [50] TUAN T Q, TOAN L V, PHAM V H.Synthesis of heterostructured TiO2 nanopores/nanotubes by anodizing at high voltages.Materials, 2024, 17(13): 3347. [51] NICOLAS-SILVENTE A I, VELASCO-ORTEGA E, ORTIZ-GARCIA I,et al. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials, 2020, 13(2): 314. [52] CAO X, WU K Y, WANG C Y,et al. Graphene oxide loaded on TiO2-nanotube-modified Ti regulates the behavior of human gingival fibroblasts. International Journal of Molecular Sciences, 2022, 23(15): 8723. [53] OSMAN M A, ALAMOUSH R A, KUSHNEREV E,et al. Biological response of epithelial and connective tissue cells to titanium surfaces with different ranges of roughness: an in-vitro study. Dental Materials, 2022, 38(11): 1777. [54] ZHAO B R, VAN DER MEI H C, SUBBIAHDOSS G,et al. Soft tissue integration versus early biofilm formation on different dental implant materials. Dental Materials, 2014, 30(7): 716. [55] MÜHL A, SZABÓ P, KRAFCSIK O,et al. Comparison of surface aspects of turned and anodized titanium dental implant, or abutment material for an optimal soft tissue integration. Heliyon, 2022, 8(8): e10263. [56] AN N, RAUSCH-FAN X, WIELAND M,et al. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dental Materials, 2012, 28(12): 1207. [57] FISCHER N G, APARICIO C.Junctional epithelium and hemidesmosomes: tape and rivets for solving the “percutaneous device dilemma” in dental and other permanent implants.Bioactive Materials, 2022, 18: 178. [58] LI N B, XIAO G Y, TSAI I H,et al. Transformation of the surface compositions of titanium during alkali and heat treatment at different vacuum degrees. New Journal of Chemistry, 2018, 42(14): 11991. [59] LIU W J, LI W Q, WANG H R,et al. Surface modification of porous titanium and titanium alloy implants manufactured by selective laser melting: a review. Advanced Engineering Materials, 2023, 25(21): 2300765. [60] HUANG Y Z, HE S K, GUO Z J,et al. Nanostructured titanium surfaces fabricated by hydrothermal method: influence of alkali conditions on the osteogenic performance of implants. Materials Science and Engineering: C, 2019, 94: 1. [61] JAGGESSAR A, MATHEW A, WANG H X,et al. Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80: 311. [62] KATO E, SAKURAI K, YAMADA M.Periodontal-like gingival connective tissue attachment on titanium surface with nano-ordered spikes and pores created by alkali-heat treatment.Dental Materials, 2015, 31(5): e116. [63] OSAK P, MASZYBROCKA J, ZUBKO M,et al. Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications. Materials, 2021, 14(24): 7536. [64] KITYK A, HNATKO M, PAVLIK V,et al. Advancing biomedical substrate engineering: an eco-friendly route for synthesizing micro- and nanotextures on 3D printed Ti-6Al-4V. Journal of Materials Research and Technology, 2024, 28: 2098. [65] LIU R, TANG Y L, LIU H,et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. Journal of Materials Science & Technology, 2020, 47: 202. [66] ABDULLA M A, HASAN R H, AL-HYANI O H. Impact of Er, Cr: YSGG laser, sandblast, and acid etching surface modification on surface topography of biodental titanium implants.Journal of Lasers in Medical Sciences, 2023, 14: e38. [67] ROY M, CORTI A, DOMINICI S,et al. Biocompatibility of subperiosteal dental implants: effects of differently treated titanium surfaces on the expression of ECM-related genes in gingival fibroblasts. Journal of Functional Biomaterials, 2023, 14(2): 59. [68] RAUSCH M A, SHOKOOHI-TABRIZI H, WEHNER C,et al. Impact of implant surface material and microscale roughness on the initial attachment and proliferation of primary human gingival fibroblasts. Biology, 2021, 10(5): 356. [69] JIN S Q, YU Y M, ZHANG T,et al. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioactive Materials, 2024, 42: 404. [70] PAN Y, CAO L L, CHEN L B,et al. Enhanced bacterial and biofilm adhesion resistance of ALD nano-TiO2 coatings compared to AO coatings on titanium abutments. International Journal of Nanomedicine, 2024, 19: 11143. [71] GUO T Q, IVANOVSKI S, GULATI K.Optimizing titanium implant nano-engineeringvia anodization. Materials & Design, 2022, 223: 111110. [72] GUO T Q, IVANOVSKI S, GULATI K.Fresh or aged: short time anodization of titanium to understand the influence of electrolyte aging on titania nanopores.Journal of Materials Science & Technology, 2022, 119: 245. [73] ŠÍSTKOVÁ J, FIALOVÁ T, SVOBODA E,et al. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Scientific Reports, 2024, 14: 17303. [74] WANG W Z, LIU H P, GUO Z L,et al. Various antibacterial strategies utilizing titanium dioxide nanotubes prepared via electrochemical anodization biofabrication method. Biomimetics, 2024, 9(7): 408. [75] DENG Z M, YU L R, KUANG Y S,et al. Highly ordered nanotube-like microstructure on titanium dental implant surface fabricated via anodization enhanced cell adhesion and migration of human gingival fibroblasts. International Journal of Nanomedicine, 2024, 19: 2469. [76] ZHU H Q, ZHANG H F, CHEN S H,et al. Fe-NC nanozymes-loaded TiO2 nanotube arrays endow titanium implants with excellent antioxidant capacity for inflammation inhibition and soft tissue integration. Composites Part B: Engineering, 2023, 267: 111054. [77] KUNRATH M F, FARINA G, STURMER L B S,et al. TiO2 nanotubes as an antibacterial nanotextured surface for dental implants: systematic review and meta-analysis. Dental Materials, 2024, 40(6): 907. [78] ALÉCIO A B W, FERREIRA C F, BABU J,et al. Doxycycline release of dental implants with nanotube surface, coated with poly lactic-co-glycolic acid for extended pH-controlled drug delivery. The Journal of Oral Implantology, 2019, 45(4): 267. [79] XIANG Y M, LIU X M, MAO C Y,et al. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Materials Science & Engineering. C, Materials for Biological Applications, 2018, 85: 214. [80] GUO Y T, WANG X, WANG C Y,et al. In vitro behaviour of human gingival fibroblasts cultured on 3D-printed titanium alloy with hydrogenated TiO2 nanotubes. Journal of Materials Science. Materials in Medicine, 2022, 33(3): 27. [81] XU L, WU C, LEI X C,et al. Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment. Surface and Coatings Technology, 2018, 342: 12. [82] ZHOU M H, WANG J, WANG J,et al. Construction of a localized and long-acting CCN2 delivery system on percutaneous Ti implant surfaces for enhanced soft-tissue integration. ACS Applied Materials & Interfaces, 2023, 15(19): 22864. [83] WEN X Y, LIU Y, XI F Q,et al. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1282590. [84] MOLAEI M, FATTAH-ALHOSSEINI A, NOURI M,et al. Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles. Surfaces and Interfaces, 2022, 30: 101967 [85] DINI C, NAGAY B E, CORDEIRO J M,et al. UV-photofunctionalization of a biomimetic coating for dental implants application. Materials Science & Engineering. C, Materials for Biological Applications, 2020, 110: 110657. [86] LI G Q, MA F C, LIU P,et al. Review of micro-arc oxidation of titanium alloys: mechanism, properties and applications. Journal of Alloys and Compounds, 2023, 948: 169773. [87] JAYASREE A, CARTMELL S, IVANOVSKI S,et al. Electrically stimulated dental implants triggers soft-tissue integration and bactericidal functions. Advanced Functional Materials, 2024, 34(23): 2311027. [88] HAN W, LIU Z Q, YU H, ,et al. An artificial piezoelectric-conductive integrated peri-implant gingiva enables efficient bacterial inhibition. An artificial piezoelectric-conductive integrated peri-implant gingiva enables efficient bacterial inhibition and soft-tissue integration. Advanced Fiber Materials, https://doi.org/10.1007/s42765-025-00543-8. |
[1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[2] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496. |
[8] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[9] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[10] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[11] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[12] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[13] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[14] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[15] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||