无机材料学报

• • 上一篇    

吸附-沉淀自组装结合放电等离子烧结法制备石墨烯增强氧化铝复合陶瓷

程澳芃1,2,3, 王跃文2,3,4, 许文涛2,5,6*, 刘全伟2,3,4, 张海涛2,5,6, 周有福2,5,6   

  1. 1.福州大学化学学院,福州 350108;
    2.中国科学院福建物质结构研究所结构化学全国重点实验室,福州 350002;
    3.中国科学院大学福建学院,福州 350002;
    4.福建师范大学化学与材料科学学院,福州 350002;
    5.中国科学院福建物质结构研究所光电材料化学与物理重点实验室,福州 350002;
    6.福建光电信息科技创新实验室,福州 350108
  • 收稿日期:2025-04-04 修回日期:2025-06-06
  • 通讯作者: 许文涛,副研究员. E-mail: wtxu@fjirsm.ac.cn
  • 作者简介:程澳芃(1999-),男,硕士研究生. E-mail: chengaopeng@fjirsm.ac.cn
  • 基金资助:
    国家重点研发计划(2022YFB3708500, 2023YFB3611000); 福建光电信息科学与技术创新实验室(2020ZZ109)

Fabrication of Graphene-reinforced Alumina Ceramic Composites via Adsorption-precipitation Self-assembly Combined with Spark Plasma Sintering

CHENG Aopeng1,2,3, WANG Yuewen2,3,4, XU Wentao2,5,6*, LIU Quanwei2,3,4, ZHANG Haitao2,5,6, ZHOU Youfu2,5,6   

  1. 1. College of Chemistry, Fuzhou University, Fuzhou 350108, China;
    2. State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou 350002, China;
    3. Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China;
    4. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, China;
    5. Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou 350002, China;
    6. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
  • Received:2025-04-04 Revised:2025-06-06
  • Contact: XU Wentao, associate professor. E-mail: wtxu@fjirsm.ac.cn
  • About author:CHENG Aopeng (1999-), male, Master candidate. E-mail: chengaopeng@fjirsm.ac.cn
  • Supported by:
    National Key Research and Development Program of China (2022YFB3708500; 2023YFB3611000); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2020ZZ109)

摘要: 氧化铝陶瓷是广泛应用的结构材料,但其固有脆性和单一功能限制了其在高性能要求环境中的应用。二维石墨烯具有优异的机械、热和电特性,将其组装入陶瓷基体,可通过界面工程促进晶粒细化,实现性能优化。传统的物理混合方法导致石墨烯片的均匀性和完整性较差,阻碍了复合材料的发展。在此,本工作提出了一种新型的吸附沉淀自组装(APSA)方法,该方法能够实现氧化石墨烯(GO)薄片与亚微米Al2O3颗粒无损复合。通过吸附在GO表面的Al3+离子均匀沉积,可获得均匀前驱体,结合放电等离子烧结(SPS)进行低温快速致密化。在制备的复合陶瓷中,石墨烯沿着氧化铝晶粒平行排列,促进了晶粒细化,并通过拉出、裂纹扩展和桥接等多种增韧机制的协同作用显著提高了材料的机械性能。与单一氧化铝陶瓷相比,复合陶瓷的抗弯强度((428±87) MPa)提高了43%,断裂韧性((4.40±0.13) MPa⋅m1/2)提高了34%。此外,与传统球磨混合工艺制作的试样相比,强度和韧性值也分别提高了15%,进一步证实该技术路线的有效性与先进性。

关键词: 石墨烯, 氧化铝, 复合陶瓷, 性能强化, 自组装

Abstract: Alumina ceramics are widely utilized structural materials, yet their inherent brittleness and monofunctionality limit their application in high-stress scenarios. The strategic integration of two-dimensional graphene sheets, characterized by their excellent mechanical, thermal and electrical properties, into ceramic matrix can facilitate grain refinement through interface engineering, thereby achieving performance optimization. Conventional physical blending methods result in poor uniformity and integrity of 2D sheets, thereby impeding advancements in graphene-ceramic composites. Herein, a novel adsorption-precipitation self-assembly (APSA) method was proposed for the nondestructive integrating of graphene oxide (GO) sheets with submicron Al2O3 particles. A homogeneous precursor is obtained by uniform deposition of Al3+ ions adsorbed on GO surface, followed by low-temperature rapid densification via spark plasma sintering (SPS). For the resultant composites, the incorporated graphene is aligned parallel to the alumina grains, facilitating grain refinement and significantly enhancing the mechanical properties through the synergistic effect of various toughening mechanisms, including pull-out, crack extension, and bridging. In comparison to monolithic alumina ceramics, the ceramic composites exhibit a 43% enhancement in flexural strength ((428±87) MPa) and a 34% improvement in fracture toughness ((4.40±0.13) MPa⋅m1/2). Furthermore, the strength and toughness values are also increased by 15% respectively, compared to specimens made from the conventional ball-milling mixing process, confirming the efficacy and advancement of such manufacturing approach.

Key words: graphene, alumina, ceramic composites, reinforcement, self-assembly

中图分类号: