• 综述 •
田甜1, 方辰恺1, 张杰1, 王维维2, 伍霆锋1, 徐家跃1
收稿日期:
2024-12-18
修回日期:
2025-01-02
作者简介:
田 甜(1985–), 男, 副教授. E-mail: tiant@sit.edu.cn
基金资助:
TIAN Tian1, FANG Chenkai1, ZHANG Jie1, WANG Weiwei2, WU Tingfeng1, XU Jiayue1
Received:
2024-12-18
Revised:
2025-01-02
About author:
TIAN Tian (1985–), male, associate professor. E-mail: tiant@sit.edu.cn
Supported by:
摘要: 铌酸锂(LiNbO3, LN)是一种集声光、电光、弹光、光折变等优越物理特性于一身的多功能晶体, 不仅被誉为“光学硅”, 更有学者提出人类正在进入“铌酸锂谷”时代, 其优异的光电性能使基于其的各类光电器件在人工智能、光电混合集成等新兴领域都具有广阔的应用前景。光折变效应在铌酸锂晶体中被发现并成为其非常重要的特性。随着基于铌酸锂的光电器件在向微纳级尺寸迅速发展, 光折变效应在微纳级尺寸也已逐渐显现。铌酸锂单晶是非绝缘体上铌酸锂单晶薄膜(Lithium niobate on insulator, LNOI)技术制备各类器件的基材, 光折变性能可通过掺杂合适的杂质离子实现调控。相对于传统的低价态阳离子(化合价<铌离子的+5价), 近年来发现掺入高价态阳离子(化合价≥铌离子的+5价)更有利于提升铌酸锂晶体的光折变性能。本文对已有报道的高价态阳离子掺杂铌酸锂晶体光折变性能的研究成果进行了综述, 经过归纳总结出掺钒、钼、铀、铋等高价态离子可以显著提升LN晶体的光折变性能, 尤其是能够有效地缩短光折变响应时间, 这有利于LN在微环谐振器、可编程光子器件、非线性光子器件等微纳器件领域的应用。同时, 提出未来可围绕高价态离子掺杂LN, 在高质量大尺寸晶体生长技术、光折变机理、其他具有孤对电子的离子掺杂、探索基于其的光电器件这四方面进行研究。
中图分类号:
田甜, 方辰恺, 张杰, 王维维, 伍霆锋, 徐家跃. 高价态离子掺杂铌酸锂晶体光折变性能的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20240525.
TIAN Tian, FANG Chenkai, ZHANG Jie, WANG Weiwei, WU Tingfeng, XU Jiayue. Research Progress on the Photorefraction of Lithium Niobate Crystal Doped with High Valence Ion[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240525.
[1] KONG Y F, BO F, WANG W W,et al. Recent progress in lithium niobate: optical damage, defect simulation, and on‐chip devices. Advance Materials, 2020, 32(3): 1806452. [2] PAN B C, LIU H X, HUANG Y S,et al. Perspective on lithium-niobate-on-insulator photonics utilizing the electro-optic and acousto-optic effects. ACS Photonics, 2023, 10(7): 2078. [3] WU Q, JI W, YIN R,et al. Reconfigurable AWGR based on LNOI with a tunable central wavelength and bandwidth used in elastic optical networking. Applied Optics, 2023, 62(25): 6631. [4] IQBAL M S B, BERRY J, GHOSH K. Study of pure Ni, NiO, and mixture of Ni-NiO thin films on piezoelectric lithium niobate substrate by pulsed laser deposition.Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films, 2023, 781(30): 1.1. [5] TORRY M, RANDALL B W, WATARU N.Auger electron spectroscopy mapping of lithium niobate ferroelectric domains with nano-scale resolution.Optical Material Express, 2023, 13(1): 119. [6] MEFFAN C, IJIMA T, BANERJEE A,et al. Non-linear processing with a surface acoustic wave reservoir computer. Microsystem Technologies, 2023, 29(8): 1197. [7] SÁNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D,et al. Lithium niobate single crystals and powders reviewed-part I. Crystals, 2020, 10(11): 973. [8] WANG C, ZHANG M, CHEN X,et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101. [9] ZHANG Y C, LI S B, XU J J,et al. Conductive domain wall and its applications in lithium niobate. Journal of Synthetic Crystals, 2024, 53(3): 395. [10] ZHANG M, BUSCAINO B, WANG C,et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568(7752): 373. [11] ZHOU J X, LIANG Y T, LIU Z X,et al, On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser & Photonics Reviews, 2021, 15(8): 2100030. [12] LI M X, LING J W, HE Y,et al. Lithium niobate photonic-crystal electro-optic modulator. Nature Communications, 2020, 11(1): 4123. [13] BRODERICK N G R, BRATFALEAN R T, MONRO T M,et al. Temperature and wavelength tuning of second-, third-, and fourth-harmonic generation in a two-dimensional hexagonally poled nonlinear crystal. Journal of the Optical Society of America B-Optical Physics, 2002, 19(9): 2263. [14] BURROUS L. Now entering, lithium niobate valley. (2017-12-21) [2024-9-24]. https://otd.harvard.edu/news/now-entering-lithium-niobate-valley. [15] SARAVI S, PERTSCH T, SETZPFANDT F.Lithium niobate on insulator: an emerging platform for integrated quantum photonics.Advanced Optical Materials, 2021, 9(22): 2100789. [16] YU Y, YU Z J, WANG L,et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths. Advanced Optical Materials, 2021, 9(19): 2100060. [17] WEI D Z, WANG C W, WANG H J,et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12(10): 596. [18] OSBORNE I S.An active platform for integrated optics.Science, 2019, 364(6439): 448. [19] GAEENI M R, BAKOUEI A, GHAMSARI M S.Highly Stable Colloidal Lithium Niobate Nanocrystals with Strong Violet and Blue Emission.Inorganic Chemistry, 2022, 61(32): 12886. [20] QIAN Y Z, ZHANG Y C, XU J J,et al. Domain-wall p-n junction in lithium niobate thin film on an insulator. Physical Review Applied, 2022, 17(4): 04011. [21] JIA D, LUO Q, YANG C,et al. High-efficiency edge couplers enabled by vertically tapering on lithium-niobate photonic chips. Applied Physics Letters, 2023, 123(26): 263502. [22] BOES A, CHANG L, LANGROCK C,et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 2023, 379(6627): 4396. [23] BORODINA I A, ZAITSEV B D, ALSOWAIDI A K M,et al. A biological sensor based on the acoustic slot mode using microbial cells for the determination of ampicillin. Acoustical Physics, 2022, 68(6): 537. [24] CHEN K F, ZHU Y Z, LIU Z H,et al. State of the art in crystallization of LiNbO3 and their applications. Molecules, 2021, 26(22): 7044. [25] ZHANG T, HE J, HU S Q,et al. Current progress of integrated lithium niobate photonic device technology. Piezoelectrics and Acoustooptics, 2020, 42(06): 837. [26] CHENG Y.Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration (invited).Chinese Journal of Lasers, 2024, 51(1): 394. [27] XIONG X, CAO Q T, XIAO Y F.Thin-film lithium niobate photonic integrated devices: advances and oppotunities.Acta Physica Sinica, 2023, 72(23): 61. [28] BOES A, CORCORAN B, CHANG L,et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonic Reviews, 2018, 12(4): 1700256. [29] CHENG G X, LIU L.High-performance electro-optical modulator based on thin-film lithium niobate (invited).Acta Optica Sinica, 2024, 44(15): 9. [30] ZHU H D, XUE H, XIE X L,et al. Memorable sounds of optics and photonics in 2022. Science & Technology Review, 2023, 41(1): 30. [31] POP F, HERRERA B, RINALDI M,et al. Lithium niobate piezoelectric micromachined ultrasonic transducers for high data-rate intrabody communication. Nature Communications, 2022, 13: 1782. [32] QIN Y Y, XUE X M, SHI L,et al. Design of ultra-compact thin-film lithium niobate edge coupler based on micro-nano structure. Journal of Optics, 2024, 26(6): 065803. [33] WANG M, CHEN Y X, ZHANG S P,et al.Perspectives of thin-film lithium niobate and electro-optic polymers for high-performance electro-optic modulation. Journal of Materials Chemistry, C. materials for optical and electronic devices, 2023, 11(33): 11107. [34] XU X B, ZHOU C L.Vernier effect facilitates integrated lithium niobate single-mode lasers.Science China Physics, Mechanics & Astronomy, 2024, 65(3): 234231. [35] JIN H, LIU F M, XU P,et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Physical Review Letters, 2014, 113(10): 103601. [36] 夏思宇. 紧扣自主创新勇攀产业“塔尖”. 南京日报, 2024-06-29(A03). [37] 晶正科技. 2013全国压电和声波理论及器件技术研讨会论文集. 2013全国压电和声波理论及器件技术研讨会, 长沙, 2013: 1. [38] 上海新硅聚合半导体有限公司. 功能薄膜异质衬底结构及其制备方法、电子元器件. CN118748146A.2024-10-08. [39] ZHONG H Z, ZHENG Y, SUN J C,et al. Gigahertz-rate-switchable wavefront shaping through integration of metasurfaces with photonic integrated circuit. Advanced Photonics, 2024, 6(1): 102. [40] WANG C, ZHANG M, CHEN X,et al. Integrated lithium niobate electro-optic modulator soperating at CMOS-compatible voltages. Nature, 2018, 562: 101. [41] THOMASCHEWSKI M, ZENIN V A, WOLFF C,et al. Plasmonic monolithic lithium niobate directional coupler switches. Nature Communications, 2020, 11: 748. [42] ASHKIN A, BOYD G D, DZIEDZIC J M,et al. Optical-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Applied Physics Letters. 1966, 9(1): 72. [43] JIANG H W, LUO R, LIANG H X,et al. Fast response of photorefraction in lithium niobate microresonators. Optics Letters, 2017, 42(17): 3267. [44] LU J J, SURYA J B, LIU X W,et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000% / W. Optica, 2019, 6(12): 1455. [45] XU Y T, SAYEM A A, ZOU C L,et al. Photorefraction-induced Bragg scattering in cryogenic lithium niobate ring resonators. Optics Letters, 2021, 46(2): 432. [46] ZHENG D H, ZHANG Y Q, WANG S L,et al. Photorefractive effect of lithium niobate crystals. Journal of Synthetic Crystals, 2022, 51(9/10): 1626. [47] HOU J K, XUE B Y, MA R X,et al. UV-enhanced photorefractive response rate in a thin-film lithium niobate microdisk. Optics Letters, 2024, 49(12): 3456. [48] WANG Y, LI M, GAO M Y, et al. Photonic time-delayed reservoir computing based on lithium niobate microring resonators. Physics Optics, DOI: 10.48550/arXiv.2408.13476. [49] WU J B, YAO S H, XIA Z R,et al. A new crystal growth method for the growth of near-stoichiometric LiNbO3. Journal of the Chinese Ceramic Society, 2008, 36(5): 608. [50] BYER R L, YOUNG J F., FEIGELSON R S.Growth of high-quality LiNbO3 crystals from the congruent melt.Journal of Applied Physics. 1970, 41(6): 2320. [51] LERNER P, LEGRAS C, DUMAS J P.Stoechiométrie des monocristaux de métaniobate de lithium.Journal of Crystal Growth, 1968, 3: 231. [52] IYI N, KITAMURA K, IZUMI F,et al. Comparative study of defect structures in lithium niobate with different compositions. Journal of Solid State Chemistry. 1992, 101(2): 340. [53] BLUMEL J, BORN E, METZGER T.Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate.Journal of Physics and Chemistry of Solids. 1994, 55(7): 589. [54] KOJIMA S.Composition variation of optical phonon damping in lithium niobate crystals.Japanese Journal of Applied Physics. 1993, 32(9): 4373. [55] WILKINSON A P, CHEETHAM A K, JARMAN R H.The defect structure of congruently melting lithium niobate. Journal of Applied Physics. 1993, 74(5): 3080. [56] CHEN K F, LI Y L, PENG C,et al. Microstructure and defect characteristics of lithium niobate with different Li concentrations. Inorganic Chemistry Frontiers, 2021, 8(17): 4006. [57] HE X K, XUE D F, KITAMURA K.Defects and their control of lithium niobate crystals.Journal of Synthetic Crystals, 2005, 34(5): 884. [58] PHILLIPS W, AMODEI J J, STAEBLER D L.Optical and holographic storage properties of transition metal doped lithium niobate.RCA Review, 1972, 33: 94. [59] SIDOROV N V, YANICHEV A A, GABAIN A A,et al. Photorefractive properties of lithium niobate single crystals doped with copper. Journal of Applied Spectroscopy, 2013, 80(2): 226. [60] YUE X F, ADIBI A, HUDSON T,et al. Role of cerium in lithium niobate for holographic recording. Journal of Applied Physics, 2000, 87(9): 4051. [61] LIU Y, LIU L, XU L,et al. Experimental study of non-volatile holographicstorage in doubly- and triply-doped lithium niobate crystals. Optics Communications. 2000, 181(1/2/3): 47. [62] ZHANG G Y, XU J J, LIU S M,et al. Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals. Proceedings of SPIE-the International Society for Optical Engineering, 1995, 2529: 14. [63] KONG Y F, WU S Q, LIU S G,et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Applied Physics Letters, 2008, 92(25): 1064. [64] TIAN T, KONG Y F, LIU S G,et al. Photorefraction of molybdenum-doped lithium niobate crystals. Optics Letters, 2012, 37(13): 2679. [65] SHIN S H, JAVIDI B.Speckle-reduced three-dimensional volume holographic display by use of integral imaging.Applied Optics, 2002, 41(14): 2644. [66] PAYNE D J, EGDELL R G, WALSH A,et al. Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. Physical Review Letters, 2006, 96(15): 157403. [67] LU Z B, WANG H, TAO Y H.WOx nanoparticles coupled with nitrogen-doped porous carbon toward electrocatalytic N2 reduction. Nanoscale, 2023, 15(36): 14847. [68] DONG Y F, LIU S G, LI W,et al. Improved ultraviolet photorefractive properties of vanadium-doped lithium niobate crystals. Optics Letters, 2011, 36(10): 1779. [69] DONG Y F, LIU S G, KONG Y F,et al. Fast photorefractive response of vanadium-doped lithium niobate in the visible region. Optics Letters, 2012, 37(11): 1841. [70] ARAUJO R M, MATTOS E F D S, MÁRIO E G V,et al. Computer simulation of the incorporation of V2+, V3+, V4+, V5+ and Mo3+, Mo4+, Mo5+, Mo6+ dopants in LiNbO3. Crystals, 2020, 10(6): 457. [71] FAN Y J, LI L L, LI Y L,et al. Hybrid density functional theory study of vanadium doping in stoichiometric and congruent LiNbO3. Physical Review B, 2019, 99(3): 035147. [72] SAEED S, ZHENG D H, LIU H D,et al. Rapid response of photorefraction in vanadium and magnesium co-doped lithium niobate. Journal of Physics D-Applied Physics, 2019, 52(40): 5303. [73] LIU M N, XUE D F, ZHANG S C,et al. Chemical synthesis of stoichiometric lithium niobate powders. Materials Letters, 2005, 59(8/9): 1095. [74] XUE D F.Structural characteristics of lithium niobate and lithium tantalate crystals.Chemical Research, 2002, 13(4): 1. [75] KLING A, VALDREZ C, MARQUES J G,et al. Incorporation of tungsten in lithium niobate by diffusion. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 190(1-4): 524. [76] KLING A, MARQUES J G, SOARES J C,et al. Valence effect on the incorporation of tungsten implanted into lithium niobate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 127(2): 520. [77] KLING A, MARQUES J G, SILVA M F D,et al. Incorporation of hexavalent impurities into LiNbO3. Radiation Effects and Defects in Solids, 1999, 150(1-4): 249. [78] HUANG M.Study on the tungsten-doped lithium niobate crystals. Tianjin: Nankai University Master’s thesis, 2015. [79] WANG W W, LIU H D, ZHENG D H,et al. Interaction between Mo and intrinsic or extrinsic defects of Mo doped LiNbO3 from first-principles calculations. Journal of Physics-condensed Matter, 2020, 32(25): 2557701. [80] LI L L, LI L Y, ZHAO X,et al. Abnormal lattice occupation of Mo and related polarons in LiNbO3: hybrid density functional theory investigation. Journal of Materiomics, 2020, 6(1): 183. [81] TIAN T, KONG Y F, LIU S G,et al. Fast UV-vis photorefractive response of Zr and Mg codoped LiNbO3:Mo. Optics Express, 2013, 21(9): 10460. [82] XUE L Y, LIU H D, ZHENG D H,et al. The photorefractive response of Zn and Mo co-doped LiNbO3 in the visible region. Crystals, 2019, 9(5): 228. [83] ZHU L, ZHENG D H, LIU H D,et al. Enhanced photorefractive properties of indium co-doped LiNbO3: Mo crystals. Applied Physics Letters, 2019, 8(9): 095316. [84] ZHU L, ZHENG D H, SAEED S,et al. Photorefractive properties of molybdenum and hafnium co-doped LiNbO3 crystals. Crystals, 2018, 8(8): 322. [85] TIAN T, KONG Y F, LIU H D,et al. Fabrication of p-type lithium niobate crystals by molybdenum doping and polarization. Journal of Physics: Conference Series, 2017, 867(1): 012037. [86] 田甜. p型铌酸锂晶体的制备. 第十七届全国晶体生长与材料学术会议, 哈尔滨, 2015: 2. [87] PEI Z D, HU Q, KONG Y F,et al. Investigation on p-type lithium niobate crystals. AIP Advances, 2011, 1(3): 032171. [88] SOHLER W, HU H, RICKEN R,et al. Integrated optical devices in lithium niobate, Optics & Photonics News, 2008, 19(1): 24. [89] KIENLE F, LIN D, ALAM S U,et al. Green-pumped, picosecond MgO:PPLN optical parametric oscillator. Journal of the Optical Society of America, B. Optical Physics, 2012, 29(1): 144. [90] PORWAL N K, KUMAR M, SASTRY M D.Electron paramagnetic resonance studies in photorefractive crystals I: hyperfine interaction and photo induced charge transfer in 235U5+ and 238U5+ doped LiNbO3.Pramana-journal of Physics, 1996, 47(6): 481. [91] LEWIS W B, HECHT H G, EASTMAN M P.Electron paramagnetic resonance and optical studies of pentavalent uranium.Journal of Cheminformatics, 1973, 4(35): 1634. [92] BRAVO D, BAUSÁ L E, LÓPEZ F J. EPR and optical study of uranium-doped LiNbO3 single crystals.Radiation Effects and Defects in Solids, 1999, 149(1-4): 363. [93] OKAMOTO E, IKEOM H, MUTO K.Holographic storage in U-doped LiNbO3.Applied Optics, 1975, 14(10): 2453. [94] TIAN T, YUAN W, LIU W,et al. Crystal growth and spectroscopic properties of uranium dioxide doped LiNbO3 with multiband absorption. Journal of Crystal Growth, 2021, 565(1): 126132. [95] TIAN T, CHEN Y H, ZHANG J,et al. Photorefraction of uranium-doped lithium niobate crystals at multiple visible wavelengths. CrystEngComm, 2023, 25(8): 1207. [96] TIAN T, XU W J, FANG C K,et al. The influence of In3+ on the crystal growth and visible band photorefraction of uranium-doped lithium niobate single crystals. Crystals, 2024, 14(4): 380. [97] TIAN T, WU T F, ZHANG J,et al. Improvement of the photorefractive responsive time and optical damage resistance of LiNbO3 by co-doping with uranium and magnesium. Optical Materials, 2024, 157(2): 116223. [98] TIAN T, YAN X D, KONG Y F,et al. Improvement in the photorefractive response speed and mechanism of pure congruent lithium niobate crystals by increasing the polarization current. Crystals, 2017, 7(12): 368. [99] JIN M, WU X J, LI X H,et al. Optical properties of La2Ti2O7 crystal grown by Bridgman method. Jouranal of Synthetic Crystals, 2011, 40(5): 1126. [100] TIAN T, FENG H W, ZHANG Y,et al. Crystal growth and luminescence properties of Dy3+ and Ge4+ co-doped Bi4Si3O12 single crystals for high power warm white LED. Crystals. 2017, 7(8): 249. [101] KONG Y F, WEN J K, WANG H F.New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In.Applied Physics Letters, 1995, 66(3): 280. [102] GOROBERTS B S, ENGOYAN S S, SIDORENKO G A.Investigation of uranium and uranium-containing minerals by their luminescence spectra.Soviet Atomic Energy, 1977, 42(3): 196. [103] PALATNIKOV M N, SIDOROV N V, KADETOVA A V,et al. Concentration threshold in optically nonlinear LiNbO3:Tb crystals. Optics & Laser Technology, 2021, 137: 106821. [104] SHIN H, LEE S, LEE M.Holographic recording in congruent LiNbO3 co-doped with Tb and Fe.Materials Science Forum, 2004, 449: 981. [105] LEE M, TAKEKAWA S, FURUKAWA Y,et al. Nonvolatile two-color holographic recording in Tb-doped LiNbO3. Applied Physics Letters, 2000, 76(13): 1653. [106] TIAN T.Study on the Growth and Photorefractive Characteristics of Molybdenum-doped Lithium Niobate Series Crystals. Tianjin: Nankai University Master’s Thesis, 2013. [107] ZHENG D H, KONG Y F, LIU S G,et al. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals. AIP advances, 2015, 5(1): 017132. [108] ZHENG D H, KONG Y F, LIU S G,et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals. Scientific Reports, 2016, 6: 20308. [109] ZHENG D H, WANG W W, WANG S L,et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate. Applied Physics Letters, 2019, 114(24): 241903. [110] WANG S L, SHAN Y D, ZHENG D H,et al. The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility. Opto-Electronic Advances, 2022, 5(12): 210135. [111] WANG S L, SHAN Y D, WANG W W,et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3:Bi, M (M=Zn, In, Zr) crystals. Applied Physics Letters, 2021, 118(19): 191902. [112] ZHENG Y L, CHEN X F.Integrated nonlinear photonics on thin-film lithium niobate: a route to an all-optical information era.Physics, 2024, 53(1): 22. [113] WANG L Z, LIU S G, KONG Y F,et al. Increased optical-damage resistance in tin-doped lithium niobate. Optics Letters, 2010, 35(6): 883. [114] HOTA P, KAPURIA A, BOSE S,et al. The role of lone-pair electrons on electrocatalytic activity of copper antimony sulfide nanostructures. Materials Chemistry and Physics, 2022, 291(15): 126676. |
[1] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[2] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[3] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[4] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[5] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[6] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[7] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[8] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[9] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[10] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[11] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[12] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[13] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[14] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[15] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||