无机材料学报 ›› 2023, Vol. 38 ›› Issue (12): 1434-1440.DOI: 10.15541/jim20230154 CSTR: 32189.14.10.15541/jim20230154
所属专题: 【信息功能】敏感陶瓷(202409); 【信息功能】电致变色与热致变色材料(202312)
收稿日期:
2023-03-27
修回日期:
2023-04-07
出版日期:
2023-09-12
网络出版日期:
2023-09-12
通讯作者:
王金敏, 教授. E-mail: jmwang@usst.edu.cn;作者简介:
孙佳伟(1997-), 男, 硕士研究生. E-mail: 203612300@st.usst.edu.cn
基金资助:
SUN Jiawei(), WAN Xinyi, YANG Ting, MA Dongyun(
), WANG Jinmin(
)
Received:
2023-03-27
Revised:
2023-04-07
Published:
2023-09-12
Online:
2023-09-12
Contact:
WANG Jinmin, professor. E-mail: jmwang@usst.edu.cn;About author:
SUN Jiawei (1997-), male, Master candidate. E-mail: 203612300@st.usst.edu.cn
Supported by:
摘要:
电致变色材料是一类可以通过调节光和热而减少能源使用的节能环保材料, 特别是化学性质稳定的过渡金属氧化物, 作为电致变色材料得到广泛研究。近年来, 双金属氧化物由于存在两种可变价态的金属离子, 具有更好的电化学活性而逐渐受到关注。本研究采用水热法成功在透明导电基底上直接生长了Ti2Nb10O29薄膜, 并探究了前驱体中铌钛原子比对薄膜电致变色性能的影响。结果表明, 由铌钛原子比为3 : 1的前驱体制备的薄膜具有较好的电致变色性能。Ti2Nb10O29薄膜在−1.6 V呈蓝灰色, 在0.4 V呈无色透明状; 在300~1100 nm的宽波长范围内, 均有较高的光调制幅度, 其褪色态的透过率接近90%; 在波长750 nm处的最大光调制幅度达69.4%; 对薄膜施加-1.6 V、60 s和0.4 V、15 s的方波电位, 测得其着色时间和褪色时间分别为29.8和5.9 s; 薄膜的着色效率为68.3 cm2·C-1。本研究制备的Ti2Nb10O29薄膜拓展了双金属氧化物电致变色材料的种类, 具有良好的应用前景。
中图分类号:
孙佳伟, 宛心怡, 杨婷, 马董云, 王金敏. Ti2Nb10O29薄膜的制备及其电致变色性能[J]. 无机材料学报, 2023, 38(12): 1434-1440.
SUN Jiawei, WAN Xinyi, YANG Ting, MA Dongyun, WANG Jinmin. Preparation and Electrochromic Properties of Ti2Nb10O29 Films[J]. Journal of Inorganic Materials, 2023, 38(12): 1434-1440.
Sample | [C4H4NNbO9]/(mol·L-1) | [C16H36O4Ti]/(mol·L-1) |
---|---|---|
TNO-1 | 0.0360 | 0.0360 |
TNO-2 | 0.0360 | 0.0180 |
TNO-3 | 0.0360 | 0.0120 |
TNO-4 | 0.0360 | 0.0090 |
表1 前驱体中铌源和钛源的浓度
Table 1 Concentrations of niobium and titanium sources in precursors
Sample | [C4H4NNbO9]/(mol·L-1) | [C16H36O4Ti]/(mol·L-1) |
---|---|---|
TNO-1 | 0.0360 | 0.0360 |
TNO-2 | 0.0360 | 0.0180 |
TNO-3 | 0.0360 | 0.0120 |
TNO-4 | 0.0360 | 0.0090 |
图1 不同铌钛原子比的前驱体得到的薄膜的XRD谱图
Fig. 1 XRD patterns of the films obtained from precursors with different atomic ratios of niobium to titanium (a) TNO-1; (b) TNO-2; TNO-3; (d) TNO-4
图2 不同铌钛原子比前驱体制备的薄膜的SEM照片
Fig. 2 SEM images of the films obtained from precursors with different atomic ratios of niobium to titanium (a) TNO-1; (b) TNO-2; (c) TNO-3; (d) TNO-4
图4 薄膜样品的阳极峰值电流密度与扫描速率的关系
Fig. 4 Relationship between anodic peak current density and scan rate of the films (a) TNO-1; (b) TNO-2; (c) TNO-3; (d) TNO-4
[1] |
LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials. Nature Energy, 2019, 4(7): 540.
DOI |
[2] |
SHAO Z, HUANG A, MING C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nature Electronics, 2022, 5(1): 45.
DOI |
[3] |
WANG J M, SUN X W, JIAO Z H. Application of Nanostructures in electrochromic materials and devices: recent progress. Materials, 2010, 3(12): 5029.
DOI PMID |
[4] |
WANG J. Electrochromism research in China. Journal of Inorganic Materials, 2021, 36(5): 449.
DOI URL |
[5] |
DIAO X. Rejuvenation and rapid growth on electrochromism researches. Journal of Inorganic Materials, 2021, 36(2): 113.
DOI URL |
[6] |
GRANQVIST C R. Electrochromic materials: out of a niche. Nature Materials, 2006, 5(2): 89.
DOI |
[7] | WANG J M, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5: 4921. |
[8] |
LI S L, HAN M, ZHANG Y, et al. X-ray and UV dual photochromism, thermochromism, electrochromism, and amine- selective chemochromism in an anderson-like Zn-7 cluster-based 7-fold interpenetrated framework. Journal of the American Chemical Society, 2019, 141(32): 12663.
DOI URL |
[9] | YANG B, MA D, ZHENG E, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells, 2019, 192: 1. |
[10] |
MA D Y, YU H Y, WANG J M. Progress in the preparation and application of nanostructured manganese dioxide. Journal of Inorganic Materials, 2020, 35(12): 1307.
DOI |
[11] | MA D Y, LI T L, XU Z P, et al. Electrochromic devices based on tungsten oxide films with honeycomb-like nanostructures and nanoribbons array. Solar Energy Materials and Solar Cells, 2018, 177: 51. |
[12] |
MJEJRI I, GROCASSAN R, ROUGIER A. Enhanced coloration for hybrid niobium-based electrochromic devices. ACS Applied Energy Materials, 2018, 1(8): 4359.
DOI URL |
[13] |
LIANG Y, CAO S, WEI Q, et al. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Letters, 2021, 13(1): 196.
DOI |
[14] | ULRICH S, SZYSZKO C, JUNG S, et al. Electrochromic properties of mixed oxides based on titanium and niobium for smart window applications. Surface and Coatings Technology, 2017, 314: 41. |
[15] |
MA D, HOU L, WANG J. Molybdenum oxide electrochromic materials and devices. Journal of Inorganic Materials, 2021, 36(5): 461.
DOI |
[16] |
HU X, WU L, WANG P, et al. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. Journal of Inorganic Materials, 2017, 32(3): 287.
DOI URL |
[17] |
DIAO X, WANG S, YANG J, et al. Preparation of lithium titanate thin film for electrochromic smart window by Sol-Gel spin coating method. Journal of Inorganic Materials, 2021, 36(5): 471.
DOI |
[18] |
CAO X, JIN P, HUANG A, et al. Sandwich structured electrolyte of high sputtering efficiency for all-solid-state electrochromic devices by optical design. Journal of Inorganic Materials, 2021, 36(5): 479.
DOI |
[19] |
WANG H, LI K, HOU C,et al. Cu3(HHTP)2 film-based ionic- liquid electrochromic electrode. Journal of Inorganic Materials, 2022, 37(8): 883.
DOI URL |
[20] |
WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015, 14(10): 996.
DOI |
[21] |
GRIFFITH K J, WIADEREK K M, CIBIN G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature, 2018, 559(7715): 556.
DOI |
[22] | YE W, YU H, CHENG X, et al. Highly efficient lithium container based on non-Wadsley-Roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochimica Acta, 2018, 292: 331. |
[23] |
CAI G, ZHU R, LIU S, et al. Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage. Advanced Energy Materials, 2021, 12(5): 2103106
DOI URL |
[24] |
WU C, SHAO Z, ZHAI W, et al. Niobium tungsten oxides for electrochromic devices with long-term stability. ACS Nano, 2022, 16(2): 2621.
DOI URL |
[25] | WU C, SHI H, ZHAO L, et al. High-performance aqueous Zn2+/Al3+ electrochromic batteries based on niobium tungsten oxides. Advanced Functional Materials, 2023, 10.1002/adfm.202214886. |
[26] |
LIU X, LIU M, HU Y, et al. Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceramics International, 2019, 45(3): 3574.
DOI URL |
[27] | MAO W, LIU K, GUO G, et al. Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochimica Acta, 2017, 253: 396. |
[28] |
DENG C, XU J, YU H, et al. One-dimensional Ti2Nb10O29 nanowire for enhanced lithium storage. Ceramics International, 2022, 48(22): 33200.
DOI URL |
[29] |
BATHE S R, PATIL P S. Influence of Nb doping on the electrochromic properties of WO3 films. Journal of Physics D-Applied Physics, 2007, 40(23): 7423.
DOI URL |
[30] |
BARAWI M, DE TRIZIO L, GIANNUZZI R, et al. Dual band electrochromic devices based on Nb-doped TiO2 nanocrystalline electrodes. ACS Nano, 2017, 11(4): 3576.
DOI URL |
[31] | COŞKUN Ö D, DEMIREL S, ATAK G. The effects of heat treatment on optical, structural, electrochromic and bonding properties of Nb2O5 thin films. Journal of Alloys and Compounds, 2015, 648: 994. |
[32] |
ROMERO R, DALCHIELE E A, MARTíN F, et al. Electrochromic behaviour of Nb2O5 thin films with different morphologies obtained by spray pyrolysis. Solar Energy Materials and Solar Cells, 2009, 93(2): 222.
DOI URL |
[33] |
GU H X, GUO C S, ZHANG S H, et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano, 2018, 12(1): 559.
DOI URL |
[1] | 甄明硕, 刘晓然, 范向前, 张文平, 严东东, 刘磊, 李晨. 电致变色型智能可视化湿度系统[J]. 无机材料学报, 2024, 39(4): 432-440. |
[2] | 牛海滨, 黄佳慧, 李倩文, 马董云, 王金敏. 多孔NiMoO4纳米片薄膜的直接水热生长及其电致变色性能[J]. 无机材料学报, 2023, 38(12): 1427-1433. |
[3] | 陈长, 赵若伊, 韩少杰, 王焕燃, 杨群, 高彦峰. 纳米晶液相镀膜制备WO3电致变色薄膜研究和性能优化[J]. 无机材料学报, 2023, 38(11): 1355-1363. |
[4] | 张家强, 邹馨蕾, 王能泽, 贾春阳. 两步电沉积法制备Zn-Fe PBA薄膜及其在电致变色器件中的性能研究[J]. 无机材料学报, 2022, 37(9): 961-968. |
[5] | 张笑宇, 刘永盛, 李然, 李耀刚, 张青红, 侯成义, 李克睿, 王宏志. 基于Cu3(HHTP)2薄膜的离子液体电致变色电极[J]. 无机材料学报, 2022, 37(8): 883-890. |
[6] | 黄郅航, 滕官宏伟, 铁鹏, 范德松. 钙钛矿陶瓷薄膜的电致变色特性[J]. 无机材料学报, 2022, 37(6): 611-616. |
[7] | 王金敏, 后丽君, 马董云. 氧化钼电致变色材料与器件[J]. 无机材料学报, 2021, 36(5): 461-470. |
[8] | 张翔, 李文杰, 王乐滨, 陈曦, 赵九蓬, 李垚. 无机电致变色材料反射特性研究进展[J]. 无机材料学报, 2021, 36(5): 451-460. |
[9] | 武琦, 丛杉, 赵志刚. 多彩氧化钨薄膜的红外电致变色性能研究[J]. 无机材料学报, 2021, 36(5): 485-491. |
[10] | 王天悦, 王梦颖, 黄庆姣, 杨佳明, 王顺花, 刁训刚. 溶胶-凝胶旋涂法制备电致变色智能窗用钛酸锂薄膜[J]. 无机材料学报, 2021, 36(5): 471-478. |
[11] | 贾汉祥, 邵泽伟, 黄爱彬, 金平实, 曹逊. 光学设计用于全固态电致变色器件的高溅射效率三明治结构电解质[J]. 无机材料学报, 2021, 36(5): 479-484. |
[12] | 杨言言, 李永国, 祝小雯, 杜晓, 马旭莉, 郝晓刚. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292-298. |
[13] | 方华靖, 赵泽天, 武文婷, 汪宏. 柔性电致变色器件研究进展[J]. 无机材料学报, 2021, 36(2): 140-151. |
[14] | 周开岭, 汪浩, 张倩倩, 刘晶冰, 严辉. WO3电致变色薄膜离子传输动力过程及其循环稳定性[J]. 无机材料学报, 2021, 36(2): 152-160. |
[15] | 赵起, 乔科, 姚勇吉, 陈长, 陈东初, 高彦峰. 基于高电导率的疏水气相SiO2复合凝胶电解质的高性能电致变色器件[J]. 无机材料学报, 2021, 36(2): 161-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||