[1] |
YASHIRO T, OAKADA Y, NAIJOH Y. Novel design for color electrochromic display. International Display Workshops, 2011, 42(1): 42-45.
|
[2] |
WANG Y, WANG S, WANG X, et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nature Materials, 2019, 18(12): 1335-1342.
DOI
URL
|
[3] |
PAN J, WANG Y, ZHENG R, et al. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. Journal of Materials Chemistry A, 2019, 7(23): 13956-13967.
DOI
URL
|
[4] |
WANG J, HOU L, MA D. Molybdenum oxide electrochromic materials and devices. Journal of Inorganic Materials, 2021, 36(5): 461-470.
DOI
URL
|
[5] |
LI F, MA D, QIAN J, et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Solar Energy Materials and Solar Cells, 2019, 192: 103-108.
|
[6] |
DYER A L, THOMPSON E J, REYNOLDS J R. Completing the color palette with spray-processable polymer electrochromics. ACS Applied Materials & Interfaces, 2011, 3(6): 1787-1795.
|
[7] |
LI K, ZHANG Q, WANG H, et al. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Applied Materials & Interfaces, 2014, 6(15): 13043-13050.
|
[8] |
MOON H C, KIM C H, LODGE T P, et al. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Applied Materials & Interfaces, 2016, 8(9): 6252-6260.
|
[9] |
YANG B, MA D, ZHENG E, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cell, 2019, 192: 1-7.
|
[10] |
ZHENG R, FAN Y, WANG Y, et al. A bifunctional triphenylamine- based electrochromic polymer with excellent self-healing performance. Electrochimica Acta, 2018, 286: 296-303.
|
[11] |
KIM J W, MYOUNG J M, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Advanced Functional Materials, 2019, 29(13): 1808911.
DOI
URL
|
[12] |
KIM D S, PARK H, HONG S Y, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019, 471: 300-308.
|
[13] |
ALESANCO Y, VINUALES A, PALENZUELA J, et al. Multicolor electrochromics: rainbow-like devices. ACS Applied Materials & Interfaces, 2016, 8(23): 14795-14801.
|
[14] |
HE W, LIU Y, WAN Z, et al. Electrodeposition of V2O5 on TiO2 nanorod arrays and their electrochromic properties. RSC Advanced, 2016, 6(73): 68997-69006.
DOI
URL
|
[15] |
ZOU X, WANG Y, TAN Y, et al. Achieved RGBY four colors changeable electrochromic pixel by coelectrodeposition of iron hexacyanoferrate and molybdate hexacyanoferrate. ACS Applied Materials & Interfaces, 2020, 12(26): 29432-29442.
|
[16] |
ZHENG L, CHEN L, ZHOU X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials, 2015, 5(2): 1400930.
DOI
URL
|
[17] |
ZHOU A, CHENG W, WANG W, et al. Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high- performance sodium and potassium ion batteries. Advanced Energy Materials, 2020, 11(2): 2000943.
DOI
URL
|
[18] |
HONG S, CHEN S. A red-to-gray poly(3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT:PSS composite counter electrode. Electrochimica Acta, 2010, 55(12): 3966-3973.
DOI
URL
|
[19] |
ZHANG L, CHEN L, ZHOU X, et al. Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Scientific Reports, 2015, 5(1): 18263.
DOI
URL
|
[20] |
LEE K, TANAKA H, TAKAHASHI A, et al. Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes. Electrochimica Acta, 2015, 163: 288-295.
|
[21] |
KHOLOUD E, WATANABE H, TAKAHASHI A, et al. Cobalt hexacyanoferrate nanoparticles for wet-processed brown-bleached electrochromic devices with hybridization of high-spin/low-spin phases. Journal of Materials Chemistry C, 2017, 5(35): 8921-8926.
DOI
URL
|
[22] |
TAKAHASHI A, NOBA K, WATANABE H, et al. One million cyclable blue/colourless electrochromic device using K2Zn3[Fe(CN)6]2 nanoparticles synthesized with a micromixer. RSC Advances, 2019, 9(70): 41083-41087.
|
[23] |
HONG S, CHEN L. Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows. Solar Energy Materials and Solar Cells, 2012, 104: 64-74.
|
[24] |
VENTURA M, MULLALIU A, CIURDUC D E, et al. Thin layer films of copper hexacyanoferrate: structure identification and analytical applications. Journal of Electroanalytical Chemistry, 2018, 827: 10-20.
|
[25] |
WANG Y, JIANG H, ZHENG R, et al. A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. Journal of Materials Chemistry A, 2020, 8(25): 12799-12809.
DOI
URL
|
[26] |
PEREIRA N M, PEREIRA C M, ARAÚJO J P, et al. Zinc electrodeposition from deep eutectic solvent containing organic additives. Journal of Electroanalytical Chemistry, 2017, 801: 545-551.
|
[27] |
WANG N, WAN H, DUAN J, et al. A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11: 100149.
|
[28] |
HEGNER F S, GALÁN-MASCARÓS J R, LOPEZ N. A database of the structural and electronic properties of Prussian blue, Prussian white, and Berlin green compounds through density functional theory. Inorganic Chemistry, 2016, 55(24): 12851-12862.
|
[29] |
MA Q, ZHANG H, CHEN J, et al. Lithium-ion-assisted ultrafast charging double-electrode smart windows with energy storage and display applications. ACS Central Science, 2020, 6(12): 2209-2216.
DOI
URL
|
[30] |
LIAO H, LIAO T, CHEN W, et al. Molybdate hexacyanoferrate (MoOHCF) thin film: a brownish red Prussian blue analog for electrochromic window application. Solar Energy Materials and Solar Cells, 2016, 145: 8-15.
|
[31] |
HEO J, CHAE M S, HYOUNG J, et al. Rhombohedral potassium-zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries. Inorganic Chemistry, 2019, 58(5): 3065-3072.
DOI
URL
|
[32] |
HUANG M, MENG J, HUANG Z, et al. Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9 V K-Zn hybrid aqueous batteries. Journal of Materials Chemistry A, 2020, 8(14): 6631-6637.
DOI
URL
|
[33] |
NIU L, CHEN L, ZHANG J, et al. Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. Journal of Power Sources, 2018, 380: S135-S141.
|
[34] |
CHEN Y, BI Z, LI X, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochimica Acta, 2017, 224: 534-540.
|
[35] |
MAENG H, KIM D, KIM N, et al. Synthesis of spherical Prussian blue with high surface area using acid etching. Current Applied Physics, 2018, 18: S21-S27.
|