无机材料学报 ›› 2022, Vol. 37 ›› Issue (3): 241-254.DOI: 10.15541/jim20210590 CSTR: 32189.14.10.15541/jim20210590
所属专题: 2022年度中国知网高下载论文
曹继伟1,2(), 王沛1,2, 刘志远1,2, 刘长勇1,2, 吴甲民3,4(), 陈张伟1,2()
收稿日期:
2021-09-26
修回日期:
2021-10-18
出版日期:
2022-03-20
网络出版日期:
2021-11-01
通讯作者:
吴甲民, 副教授. E-mail: jiaminwu@hust.edu.cn; 陈张伟, 教授. E-mail: chen@szu.edu.cn
作者简介:
曹继伟(1989-), 男, 博士. E-mail: caojiwei@szu.edu.cn
基金资助:
CAO Jiwei1,2(), WANG Pei1,2, LIU Zhiyuan1,2, LIU Changyong1,2, WU Jiamin3,4(), CHEN Zhangwei1,2()
Received:
2021-09-26
Revised:
2021-10-18
Published:
2022-03-20
Online:
2021-11-01
Contact:
WU Jiamin, associate professor. E-mail: jiaminwu@hust.edu.cn; CHEN Zhangwei, professor. E-mail: chen@szu.edu.cn
About author:
CAO Jiwei (1989-), male, PhD. E-mail: caojiwei@szu.edu.cn
Supported by:
摘要:
陶瓷以其优异的热物理化学性能在航空航天、能源、环保以及生物医疗等领域具有极大的应用潜力。随着这些领域相关技术的快速发展, 其核心零件部件外形结构设计日益复杂、内部组织逐步走向定制化、梯度化。陶瓷具有硬度高、脆性大等特点, 较难通过传统的加工成形方法实现异形结构零件的制造, 最终限制了陶瓷材料的工程应用范围。激光增材制造技术作为一种快速发展的增材制造技术, 在复杂精密陶瓷零部件的制造中具有显著优势: 无模、精度高、响应快以及周期短, 同时能够实现陶瓷零件组织结构灵活调配, 有望解决上述异形结构陶瓷零件成形问题。本文综述了多种基于粉末成形的激光增材制造陶瓷技术: 基于粉末床熔融的激光选区烧结和激光选区熔化; 基于定向能量沉积的激光近净成形技术。主要讨论了各类激光增材陶瓷技术的成形原理与特点, 综述了激光选区烧结技术中陶瓷坯体后处理致密化工艺以及激光选区熔化和激光近净成形技术这两种技术中所打印陶瓷坯体基体裂纹开裂行为分析及其控制方法的研究进展, 对比分析了激光选区烧结、激光选区熔化以及激光近净成形技术在成形陶瓷零件的技术特征, 最后展望了激光增材制造陶瓷技术的未来发展趋势。
中图分类号:
曹继伟, 王沛, 刘志远, 刘长勇, 吴甲民, 陈张伟. 基于粉末成形的激光增材制造陶瓷技术研究进展[J]. 无机材料学报, 2022, 37(3): 241-254.
CAO Jiwei, WANG Pei, LIU Zhiyuan, LIU Changyong, WU Jiamin, CHEN Zhangwei. Research Progress on Powder-based Laser Additive Manufacturing Technology of Ceramics[J]. Journal of Inorganic Materials, 2022, 37(3): 241-254.
图2 陶瓷零件SLS工艺流程及其它后处理工艺[1]
Fig. 2 Process of SLS and its post-treatment process for ceramic[1] The process marked with asterisk * is optional. SLS: Selective laser sintering
图3 SLS结合等静压制备ZrO2陶瓷零件及其微观形貌[28]
Fig. 3 ZrO2 ceramic parts and their morphologies prepared by SLS combined with isostatic pressing[28] (a, d) ZrO2 ceramic green bodies and their morphologies printed by SLS; (b) Warm isostatic pressure equipment; (c, e) ZrO2 ceramics and their microstructures after warm isostatic pressing sintering. SLS: Selective laser sintering; WIP: Warm isostatic pressing
图4 SiC陶瓷及其复合材料零件SLS制备过程[33,36-37]
Fig. 4 Preparation process of SiC ceramics and its composite parts by SLS[33,36-37] (a-d) Reaction sintering of Cf/SiC ceramic matrix composites by SLS technology; (e-h) SLS preparation process of SiC/SiC ceramics PF: Phenolic resin; Cf: Carbon fiber; SLS: Selective laser sintering; LSI: Liquid silicon infiltration; PIP: Precusor infiltration pyrolysis
图5 多孔陶瓷SLS制备方法[38,39,40,41]
Fig. 5 Methods of porous ceramic by SLS technology[38,39,40,41] (a) Pre-treatment of ceramic particles and SLS; (b) Sintering of porous ceramic;(c) Porous mullite ceramic; (d) Porous Al2O3 ceramic; (e) Porous Si3N4 ceramic; SLS: Selective laser sintering
图6 SLS打印的多孔陶瓷在生物医学上的应用
Fig. 6 Application of porous ceramic by SLS technology in biomedicine (a, b) CC-PLLA porous skull scaffolds and their mechanical properties[43]; (c, d) Porous biological ceramic scaffolds and their micromorphologies[48] SLS: Selective laser sintering
图8 SLM打印的陶瓷及其微观缺陷[51,52]
Fig. 8 Ceramics and their microdefects printed by selective laser melting[51,52] (a) ZrO2 sample; (b, c) Al2O3 samples and cracks; (d) Un-melted alumina balls
图9 SLM陶瓷基体内部闭气孔和表面凹点形成的原因[54]
Fig. 9 Formation of closed pores and pits of ceramic by SLM[54] (a) SLM printing process and Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics; (b) Formation process of the closed pores and pits
图11 LENS打印的陶瓷试样[62,67]
Fig. 11 Ceramic printed by LENS[62,67] (a) Al2O3 spherical particles; (b, c) Large-sized cylindrical Al2O3 ceramic, stress-strain curve and fracture morphology of Al2O3 ceramic; (d) Single-bead wall part fabricated with different laser power; (e) Typical geometry of the cross-section of a single-bead wall part
图12 Al2O3/GdAlO3/ZrO2共晶陶瓷[70]
Fig. 12 Al2O3/GdAlO3/ZrO2 eutectic ceramics[70] (a) Ceramic shaping process; (b) Eutectic ceramic sample; (c) Annealed eutectic ceramic sample
图13 SLM-CO2激光预热方式和LENS-感应预热方式及其制备的陶瓷
Fig. 13 CO2 laser preheating method, induction preheating method and prepared ceramics (a) CO2 laser preheating method and ZrO2/Al2O3 ceramic prepared by SLM[77]; (b) Induction preheating method and ZrO2/Al2O3 ceramic prepared by LENS[75]
图14 扫描策略和超声振动对裂纹缺陷的影响[63,78]
Fig. 14 Effect of scanning strategy and ultrasonic vibration on the crack defects[63,78] (a) Scanning strategy; (b) Ultrasonic vibration
Technology | Raw materials | Post-treatment | Dimensional accuracy | Ref. | |
---|---|---|---|---|---|
PBF | SLS | Al2O3, ZrO2, Si3N4, SiC, Cf/SiC, Si3N4-SiC/SiO2, mullite, porous bio-ceramics such as PA-PEEK, HA-PC, CC-PLLA, etc. | Debinding, isostatic pressing/infiltration pyrolysis, pressureless sintering/reactive sintering | High | [ |
SLM | Al2O3, ZrO2, ZrO2/Al2O3, MoSi2-Si3N4, ZrB2/ZrC, Al2O3-based eutectic ceramics | None | Low | [ | |
DED | LENS | Al2O3, ZrO2/Al2O3, Al2O3-based eutectic ceramics | None | Low | [ |
表1 基于粉末成形的激光增材制造陶瓷技术对比
Table 1 Comparation of powder-based laser additive manufacturing technologies of ceramics
Technology | Raw materials | Post-treatment | Dimensional accuracy | Ref. | |
---|---|---|---|---|---|
PBF | SLS | Al2O3, ZrO2, Si3N4, SiC, Cf/SiC, Si3N4-SiC/SiO2, mullite, porous bio-ceramics such as PA-PEEK, HA-PC, CC-PLLA, etc. | Debinding, isostatic pressing/infiltration pyrolysis, pressureless sintering/reactive sintering | High | [ |
SLM | Al2O3, ZrO2, ZrO2/Al2O3, MoSi2-Si3N4, ZrB2/ZrC, Al2O3-based eutectic ceramics | None | Low | [ | |
DED | LENS | Al2O3, ZrO2/Al2O3, Al2O3-based eutectic ceramics | None | Low | [ |
[1] |
CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: a review. Journal of the European Ceramic Society, 2019, 39(4): 661-687.
DOI URL |
[2] |
RASAKI S A, XIONG D, XIONG S, et al. Photopolymerization- based additive manufacturing of ceramics: a systematic review. Journal of Advanced Ceramics, 2021, 10(3): 442-471.
DOI URL |
[3] |
LU Z, CAO J, SONG Z, et al. Research progress of ceramic matrix composite parts based on additive manufacturing technology. Virtual and Physical Prototyping, 2019, 14(4): 333-348.
DOI URL |
[4] |
PFEIFFER S, FLORIO K, PUCCIO D, et al. Direct laser additive manufacturing of high performance oxide ceramics: a state-of-the-art review. Journal of the European Ceramic Society, 2021, 41(13): 6087-6014.
DOI URL |
[5] | DECKARD C R. Method and Apparatus for Producing Parts by Selective Sintering. U.S. Patent. No.4863538. 1989.09.05. |
[6] | LAKSHMINARAYAN U, OGRYDIZIAK S, MARCUS H. Selective Laser Sintering of Ceramic Materials. 1990 International Solid Freeform Fabrication Symposium, Austin, 1990: 16-26. |
[7] | LAKSHMINARAYAN U, MARCUS H. Microstructural and Mechanical Properties of Al2O3/P2O5 and Al2O3/B2O3 Composties Fabricated by Selective Laser Sintering. 1991 International Solid Freeform Fabrication Symposium, Austin, 1991: 205-212. |
[8] |
CLARE A, CHALKER P, DAVIES S, et al. Selective laser sintering of barium titanate-polymer composite films. Journal of Materials Science, 2008, 43(9): 3197-3202.
DOI URL |
[9] |
TAN K, CHUA C, LEONG K, et al. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 2003, 24(18): 3115-3123.
DOI URL |
[10] |
GAO C, YANG B, HU H, et al. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Materials Science and Engineering: C, 2013, 33(7): 3802-3810.
DOI URL |
[11] |
LEE I. Densification of porous Al2O3-Al4B2O9 ceramic composites fabricated by SLS process. Journal of Materials Science Letters, 1999, 18(19): 1557-1561.
DOI URL |
[12] | HARLAN N, PARK S M, BOURELL D L, et al. Selective Laser Sintering of Zirconia with Micro-scale Features. 1999 International Solid Freeform Fabrication Symposium, Austin, 1999: 297-302. |
[13] |
TANG H H. Direct laser fusing to form ceramic parts. Rapid Prototyping Journal, 2002, 8(5): 284-289.
DOI URL |
[14] |
XIAO K, DALGARNO K, WOOD D, et al. Indirect selective laser sintering of apatite-wollostonite glass-ceramic. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222(7): 1107-1114.
DOI URL |
[15] |
LIU J, ZHANG B, YAN C, et al. The effect of processing parameters on characteristics of selective laser sintering dental glass-ceramic powder. Rapid Prototyping Journal, 2010, 16(2): 138-145.
DOI URL |
[16] | SHI Y S, CHENG D, LIU J H, et al. Al2O3/SiO2 composite ceramic parts by selective laser sintering. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2007, 35(11): 20-23. |
[17] |
YVES-CHRISTIAN H, JAN W, WILHELM M, et al. Net shaped high performance oxide ceramic parts by selective laser melting. Physics Procedia, 2010, 5: 587-594.
DOI URL |
[18] | VAIL N K, BALASUBRAMANIAN B, BARLOW J W, et al. A thermal model of polymer degradation during selective laser sintering of polymer coated ceramic powders. Rapid Prototyping Journal, 1996, 2(3): 24-40. |
[19] |
CHEN A N, WU J M, LIU K, et al. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review. Advances in Applied Ceramics, 2017, 117(2): 100-117.
DOI URL |
[20] | WU J M, CHEN A N, LIU M Y, et al. Preparation of ceramic materials used for selective laser sintering and related forming methods. Materials China, 2017, 36(Z1): 575-582. |
[21] |
TANG H H, CHIU M L, YEN H C. Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. Journal of the European Ceramic Society, 2011, 31(8): 1383-1388.
DOI URL |
[22] |
FRIEDEL T, TRAVITZKY N, NIEBLING F, et al. Fabrication of polymer derived ceramic parts by selective laser curing. Journal of the European Ceramic Society, 2005, 25(2/3): 193-197.
DOI URL |
[23] | WOHLERT M, BOURELL D. Rapid Prototyping of Mg/SiC Composites by a Combined SLS and Pressureless Infiltration Process. 1996 Solid Freeform Fabrication Symposium, Austin, 1996: 79-88. |
[24] |
DECKERS J, KRUTH J P, SHAHZAD K, et al. Density improvement of alumina parts produced through selective laser sintering of alumina-polyamide composite powder. CIRP Annals- Manufacturing Technology, 2012, 61(1): 211-214.
DOI URL |
[25] |
DECKERS J, SHAHZAD K, VLEUGELS J, et al. Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyping Journal, 2012, 18(5): 409-419.
DOI URL |
[26] |
SHAHZAD K, DECKERS J, KRUTH J P, et al. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. Journal of Materials Processing Technology, 2013, 213(9): 1484-1494.
DOI URL |
[27] |
DECKERS J P, SHAHZAD K, CARDON L, et al. Shaping ceramics through indirect selective laser sintering. Rapid Prototyping Journal, 2016, 22(3): 544-558.
DOI URL |
[28] |
SHAHZAD K, DECKERS J, ZHANG Z, et al. Additive manufacturing of zirconia parts by indirect selective laser sintering. Journal of the European Ceramic Society, 2014, 34(1): 81-89.
DOI URL |
[29] |
WANG K, BAO C, ZHANG C, et al. Preparation of high-strength Si3N4 antenna window using selective laser sintering. Ceramics International, 2021, 47(22): 31277-31285.
DOI URL |
[30] | SHI Y S, LIU K, HE W T, et al. Densification of alumina components via indirect selective laser sintering combined with isostatic pressing. Applied Laser, 2013(1): 7-12. |
[31] | DU Y Y, SHI Y S, WEI Q S. Technology and simulation of cold isostatic pressing of selective laser sintered parts. Laser Technology, 2014, 38(1): 96-100. |
[32] | HE W T, WEI Q S, LIU K, et al. The application of numerical simulation in the SLS/CIP process of alumina ceramics. Materials Science & Technology, 2014, 22(4): 56-60. |
[33] |
ZHU W, FU H, XU Z, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. Journal of the European Ceramic Society, 2018, 38(14): 4604-4613.
DOI URL |
[34] |
FU H, ZHU W, XU Z, et al. Effect of silicon addition on the microstructure, mechanical and thermal properties of Cf/SiC composite prepared via selective laser sintering. Journal of Alloys and Compounds, 2019, 792: 1045-1053.
DOI URL |
[35] |
YU S, ZENG T, PAN X, et al. Fabrication of Si3N4-SiC/SiO2 composites using 3D printing and infiltration processing. Ceramics International, 2021, 47(20): 28218-28225.
DOI URL |
[36] |
JIN L, ZHANG K, XU T, et al. The fabrication and mechanical properties of SiC/SiC composites prepared by SLS combined with PIP. Ceramics International, 2018, 44(17): 20992-20999.
DOI URL |
[37] | ZHANG K, ZENG T, XU G, et al. Mechanical properties of SiCp/SiC composite lattice core sandwich panels fabricated by 3D printing combined with precursor impregnation and pyrolysis. Composite Structures, 2020, 240: 12060. |
[38] |
WEI Z H, CHENG L J, MA Y X, et al. Direct fabrication mechanism of pre-sintered Si3N4 ceramic with ultra-high porosity by laser additive manufacturing. Scripta Materialia, 2019, 173: 91-95.
DOI URL |
[39] |
CHEN A N, LI M, WU J M, et al. Enhancement mechanism of mechanical performance of highly porous mullite ceramics with bimodal pore structures prepared by selective laser sintering. Journal of Alloys and Compounds, 2019, 776: 486-494.
DOI URL |
[40] |
WU J M, LI M, LIU S S, et al. Preparation of porous Al2O3 ceramics with enhanced properties by SLS using Al2O3 poly-hollow microspheres (PHMs) coated with CaSiO3 sintering additive. Ceramics International, 2020, 46(17): 26888-26894.
DOI URL |
[41] |
CHEN A N, GAO F, LI M, et al. Mullite ceramic foams with controlled pore structures and low thermal conductivity prepared by SLS using core-shell structured polyamide12/FAHSs composites. Ceramics International, 2019, 45(12): 15538-15546.
DOI URL |
[42] |
SONG X, LI W, SONG P, et al. Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. The International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 15-25.
DOI URL |
[43] |
GAYER C, RITTER J, BULLEMER M, et al. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Materials Science and Engineering: C, 2019, 101: 660-673.
DOI URL |
[44] |
CHUNG H, DAS S. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering: A, 2008, 487(1/2): 251-257.
DOI URL |
[45] |
LORRISON J, DALGARNO K, WOOD D. Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering. Journal of Materials Science: Materials in Medicine, 2005, 16(8): 775-781.
DOI URL |
[46] |
GOODRIDGE R, DALGARNO K, WOOD D. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006, 220(1): 57-68.
DOI URL |
[47] |
GOODRIDGE R D, WOOD D J, OHTSUKI C, et al. Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering. Acta Biomaterialia, 2007, 3(2): 221-231.
DOI URL |
[48] |
DUAN B, WANG M, ZHOU W Y, et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater, 2010, 6(12): 4495-4505.
DOI URL |
[49] |
SCHLEIFENBAUM H, MEINERS W, WISSENBACH K, et al. Individualized production by means of high power selective laser melting. CIRP Journal of Manufacturing Science and Technology, 2010, 2(3): 161-169.
DOI URL |
[50] |
MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2006, 12(5): 254-265.
DOI URL |
[51] |
SHISHKOVSKY I, YADROITSEV I, BERTRAND P, et al. Alumina-zirconium ceramics synthesis by selective laser sintering/ melting. Applied Surface Science, 2007, 254(4): 966-970.
DOI URL |
[52] |
DECKERS J, MEYERS S, KRUTH J P, et al. Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures. Physics Procedia, 2014, 56 117-124.
DOI URL |
[53] |
BERTRAND P, BAYLE F, COMBE C, et al. Ceramic components manufacturing by selective laser sintering. Applied Surface Science, 2007, 254(4): 989-992.
DOI URL |
[54] |
LIU H, SU H, SHEN Z, et al. Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting. Ceramics International, 2019, 45(14): 17252-17257.
DOI URL |
[55] |
MÜHLER T, GOMES C M, HEINRICH J, et al. Slurry-based additive manufacturing of ceramics. International Journal of Applied Ceramic Technology, 2015, 12(1): 18-25.
DOI URL |
[56] |
GAHLER A, HEINRICH J G, GUENSTER J. Direct laser sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition. Journal of the American Ceramic Society, 2006, 89(10): 3076-3080.
DOI URL |
[57] | MÜHLER T, GOMES C, ASCHERI M, et al. Slurry-based powder beds for the selective laser sintering of silicate ceramics. J. Ceram. Sci. Technol., 2015, 6(2): 113-118. |
[58] |
TIAN X, GÜNSTER J, MELCHER J, et al. Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi's method. Journal of the European Ceramic Society, 2009, 29(10): 1903-1915.
DOI URL |
[59] |
LI Y, HU Y, CONG W, et al. Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables. Ceramics International, 2017, 43(10): 7768-7775.
DOI URL |
[60] |
BALLA V K, BOSE S, BANDYOPADHYAY A. Processing of bulk alumina ceramics using laser engineered net shaping. International Journal of Applied Ceramic Technology, 2008, 5(3): 234-242.
DOI URL |
[61] | GRIFFITH M, KEICHER D, ATWOOD C, et al. Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS). 1996 Solid Freeform Fabrication Symposium, Austin, 1996. |
[62] |
NIU F, WU D, LU F, et al. Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping. Ceramics International, 2018, 44(12): 14303-14310.
DOI URL |
[63] |
HU Y, NING F, CONG W, et al. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties. Ceramics International, 2018, 44(3): 2752-2760.
DOI URL |
[64] |
NIU F, WU D, MA G, et al. Nanosized microstructure of Al2O3-ZrO2(Y2O3) eutectics fabricated by laser engineered net shaping. Scripta Materialia, 2015, 95: 39-41.
DOI URL |
[65] |
NIU F, WU D, MA G, et al. Rapid fabrication of eutectic ceramic structures by laser engineered net shaping. Procedia CIRP, 2016, 42: 91-95.
DOI URL |
[66] |
YAN S, WU D, MA G, et al. Nano-sized Al2O3-ZrO2 eutectic ceramic structures prepared by ultrasonic-assisted laser engineered net shaping. Materials Letters, 2018, 212: 8-11.
DOI URL |
[67] |
NIU F, WU D, ZHOU S, et al. Power prediction for laser engineered net shaping of Al2O3 ceramic parts. Journal of the European Ceramic Society, 2014, 34(15): 3811-3817.
DOI URL |
[68] |
YAN S, WU D, NIU F, et al. Effect of ultrasonic power on forming quality of nano-sized Al2O3-ZrO2 eutectic ceramic via laser engineered net shaping (LENS). Ceramics International, 2018, 44(1): 1120-1126.
DOI URL |
[69] |
SU H J, ZHANG J, LIU L, et al. Rapid growth and formation mechanism of ultrafine structural oxide eutectic ceramics by laser direct forming. Applied Physics Letters, 2011, 99(22): 221913.
DOI URL |
[70] | LIU H, SU H, SHEN Z, et al. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism. Journal of Materials Science & Technology, 2021, 85: 218-223. |
[71] |
LIU H, SU H, SHEN Z, et al. One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 2021, 41(6): 3547-3558.
DOI URL |
[72] |
WILKES J, HAGEDORN Y C, MEINERS W, et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51-57.
DOI URL |
[73] | AGGARANGSI P, BEUTH J L. Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing. International Solid Freeform Fabrication Symposium, Austin, 2006. |
[74] | HAGEDORN Y, BALACHANDRAN N, MEINERS W, et al. SLM of Net-shaped High Strength Ceramics: New Opportunities for Producing Dental Restorations. Proceedings of the Solid Freeform Fabrication Symposium, Austin, 2011: 536-546. |
[75] | LIU Z, SONG K, GAO B, et al. Microstructure and mechanical properties of Al2O3/ZrO2 directionally solidified eutectic ceramic prepared by laser 3D printing. Journal of Materials Science & Technology, 2016, 32(4): 320-325. |
[76] | WILKES J, HAGEDORN Y C, OCYLOK S, et al. Rapid Manufacturing of Ceramic Parts by Selective Laser Melting. Ceramic Engineering and Science Proceedings, Wiley-Blackwell, United States, 2010. |
[77] |
WILKES J, HAGEDORN Y C, MEINERS W, et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51-57.
DOI URL |
[78] |
MISHRA G K, PAUL C P, RAI A K, et al. Experimental investigation on laser directed energy deposition based additive manufacturing of Al2O3 bulk structures. Ceramics International, 2021, 47(4): 5708-5720.
DOI URL |
[79] |
MEYERS S, DE LEERSNIJDER L, VLEUGELS J, et al. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content. Journal of the European Ceramic Society, 2018, 38(11): 3709-3717.
DOI URL |
[80] | DUBINENKO G E, ZINOVIEV A L, BOLBASOV E N, et al. Preparation of poly(l-lactic acid)/hydroxyapatite composite scaffolds by fused deposit modeling 3D printing. Materials Today: Proceedings, 2020, 22: 228-234. |
[81] |
MINASYAN T, LIU L, HOLOVENKO Y, et al. Additively manufactured mesostructured MoSi2-Si3N4 ceramic lattice. Ceramics International, 2019, 45(8): 9926-9933.
DOI URL |
[82] |
HONG M H, MIN B K, LEE D H, et al. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. Journal of Prosthetic Dentistry, 2019, 122(5): 475-481.
DOI URL |
[83] |
KING D, MIDDENDORF J, CISSEL K, et al. Selective laser melting for the preparation of an ultra-high temperature ceramic coating. Ceramics International, 2019, 45(2): 2466-2473.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 谭敏, 陈小武, 杨金山, 张翔宇, 阚艳梅, 周海军, 薛玉冬, 董绍明. 流延成型结合反应熔渗制备ZrB2-SiC陶瓷及其微观结构与氧化行为研究[J]. 无机材料学报, 2024, 39(8): 955-964. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[7] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[8] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[9] | 武向权, 滕家琛, 季祥旭, 郝禹博, 张忠明, 徐春杰. 织构化多孔Al2O3-SiO2复合陶瓷片-球混合浆料特性及光强分布仿真[J]. 无机材料学报, 2024, 39(7): 769-778. |
[10] | 王康龙, 殷杰, 陈晓, 王力, 刘学建, 黄政仁. 颗粒级配对选区激光烧结打印结合常压固相烧结制备碳化硅陶瓷性能的影响[J]. 无机材料学报, 2024, 39(7): 754-760. |
[11] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[12] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[13] | 刘焱, 覃显鹏, 甘霖, 周国红, 章天金, 王士维, 陈鹤拓. 亚微米球形Y2O3粉体及其透明陶瓷的制备[J]. 无机材料学报, 2024, 39(6): 691-696. |
[14] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[15] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||