[1] BARACK O.The irreversible momentum of clean energy.Science, 2017, 355: 126-131. [2] CHU S, MAJUMDAR A.Opportunities and challenges for a sustainable energy future.Nature, 2012, 488(7411): 294-303. [3] ZHOU R, ZHENG Y, JARONIEC M, et al. Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catalysis, 2016, 6(7): 4720-4728. [4] ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: integrated H2O2 electrogeneration, activation, and pollutants adsorption. Electrochim Acta, 2019, 296: 317-326. [5] SUN Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. Journal of the American Chemical Society, 2019, 141(31): 12372-12381. [6] WANG C, ZHAO H, WANG J, et al. Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc-air batteries. Journal of Materials Chemistry A, 2019, 7(4): 1451-1458. [7] WANG J, KONG H, ZHANG J, et al. Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116(17): 100717-100754. [8] YANG L, SHUI J, DU L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Advanced Materials, 2019, 31(13): e1804799. [9] LI Y, LU J.Metal-air batteries: will they be the future electrochemical energy storage device of choice.ACS Energy Letters, 2017, 2(6): 1370-1377. [10] ZHOU M, WANG H L, GUO S.Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials.Chemical Society Reviews, 2016, 45(5): 1273-1307. [11] YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catalysis, 2018, 8(5): 4064-4081. [12] QIANG Z, CHANG J H, HUANG C P.Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions.Water Research, 2002, 36: 85-95. [13] CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process.Angewandte Chemie International Edtion, 2006, 45(42): 6962-6984. [14] EDWARDS J K, FREAKLEY S J, LEWIS R J, et al. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today, 2015, 248(7): 3-9. [15] RUSSO V, TESSER R, SANTACESARIA E, et al. Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process). Industrial & Engineering Chemistry Research, 2013, 52(3): 1168-1178. [16] LUO M, YANG Y, GUO S.Precious metal nanocrystals for renewable energy electrocatalysis: structural design and controlled synthesis.Dalton Transaction, 2020, 49(2): 267-273. [17] ASEFA T.Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts.Accounts of Chemical Research, 2016, 49(9): 1873-1883. [18] CHEN Y, JI S, CHEN C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2(7): 1242-1264. [19] ZHU Y P, GUO C, ZHENG Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Accounts of Chemical research, 2017, 50(4): 915-923. [20] TANG C, WANG H F, CHEN X, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 2016, 28(32): 6845-6851. [21] JIA Y, CHEN J, YAO X.Defect electrocatalytic mechanism: concept, topological structure and perspective.Materials Chemistry Frontiers, 2018, 2(7): 1250-1268. [22] YAN X, JIA Y, YAO X.Defects on carbons for electrocatalytic oxygen reduction.Chemical Society Reviews, 2018, 47(20): 7628-7658. [23] DORRI MOGHADAM A, OMRANI E, MENEZES P L, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review. Composites Part B:Engineering, 2015, 77: 402-420. [24] GEIM A K.Graphene: status and prospects.Science, 2009, 324(19): 1530-1536. [25] STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors. Nano Letters, 2008, 8(10): 3498-3402. [26] KUILLA T, BHADRA S, YAO D, et al. Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010, 35(11): 1350-1375. [27] KOTSYUBYNSKY V O, BOYCHUK V M, BUDZULIAK I M, et al. Structural properties of graphene oxide materials synthesized accordingly to Hummers, Tour and modified methods: XRD and Raman study. Physics and Chemistry of Solid State, 2021, 22(1): 31-38. [28] MASTSUBARA C, KAWAMOTO N, TAKAMURA K.Oxo [5,10,15,20-tetra(4-pyridyl)porp hyrinatoltitanium (IV): an ultra- high sensitivity spectrophotometric reagent for hydrogen peroxide.Analyst, 1992, 117: 1781-1784. [29] EISENBERG G.Colorimetric determination of hydrogen peroxide.Industrial & Engineering Chemistry, 1943, 15(5): 327-328. [30] O'KANE S A, CLÉRAC R, ZHAO H, et al. New crystalline polymers of Ag(TCNQ) and Ag(TCNQF4): structures and magnetic properties. Journal of Solid State Chemistry, 2000, 152(1): 159-173. [31] ZHANG Q, ZHANG X, WANG J, et al. Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology, 2021, 32(3): 1-24. [32] MOHAN V B, LAU K T, HUI D, et al. Graphene-based materials and their composites: a review on production, applications and product limitations. Composites Part B: Engineering, 2018, 142: 200-220. [33] HAN L, SUN Y, LI S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catalysis, 2019, 9(2): 1283-1288. [34] MALARD L M, PIMENTA M A, DRESSELHAUS G, et al. Raman spectroscopy in graphene. Physics Reports, 2009, 473(5/6): 51-87. [35] JIRKOVSKY J S, PANAS I, AHLBERG E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. Journal of the American Chemical Society, 2011, 133(48): 19432-19441. |