[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303.
|
[2] |
SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011,19(5):698-706.
|
[3] |
吕昭平, 蒋虽合, 何骏阳, 等. 先进金属材料的第二相强化. 金属学报, 2016,52(10):1183-1198.
|
[4] |
SENKOV O N, SENKOVA S V, MIRACLE D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Materials Science and Engineering: A, 2013,565:51-62.
|
[5] |
SENKOV O N, SENKOVA S V, WOODWARD C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 2014,68:214-228.
DOI
URL
|
[6] |
SENKOV O N, WOODWARD C, MIRACLE D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 2014,66(10):2030-2042.
|
[7] |
SENKOV O N, GORSSE S, MIRACLE D B. High temperature strength of refractory complex concentrated alloys. Acta Materialia, 2019,175:394-405.
|
[8] |
童文辉, 张新元, 李为轩, 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响. 金属学报, 2020,56(9):1265-1274.
|
[9] |
高银, 刘涛, 韩勇, 等. TiC对W-7Cu复合材料组织与性能的影响. 中国有色金属学报, 2020,30(6):1281-1288.
|
[10] |
MUNIR Z A, ANSELMI-TAMBURINI U, OHYANAGI M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science, 2006,41(3):763-777.
|
[11] |
YAVARI A R, DESRE P J, BENAMEUR T. Mechanically driven alloying of immiscible elements. Physical Review Letters, 1992,68(14):2235-2238.
URL
PMID
|
[12] |
雷智锋. 间隙原子对难熔高熵合金力学和阻尼性能的影响规律及机理研究. 北京: 北京科技大学博士学位论文, 2019.
|
[13] |
TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005,46(12):2817-2829.
|
[14] |
陈伟亮, 张宁, 唐昭辉, 等. Miedema模型在含O和S熔体与合金中的扩展与应用. 材料研究学报, 2014,28(1):31-43.
|
[15] |
HAN Z D, CHEN N, ZHAO S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017,84:153-157.
|
[16] |
JUAN C C, TSAI M H, TSAI C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 2015,62:76-83.
DOI
URL
|
[17] |
GUO N N, WANG L, LUO L S, et al. Effect of composing element on microstructure and mechanical properties in Mo-Nb-Hf-Zr-Ti multi-principle component alloys. Intermetallics, 2016,69:13-20.
|
[18] |
STEPANOV N D, SHAYSULTANOV D G, SALISHCHEV G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 2015,142:153-155.
|
[19] |
GUO W, LIU B, LIU Y, et al. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. Journal of Alloys and Compounds, 2018,776(5):428-436.
DOI
URL
|
[20] |
SENKOV O N, WOODWARD C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A, 2011,529:311-320.
|
[21] |
WASEEM O A, LEE J, LEE H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Materials Chemistry and Physics, 2018,210:87-94.
|
[22] |
PAN J, DAI T, LU T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Materials Science and Engineering: A, 2018,738:362-366.
|
[23] |
LIU Q, WANG G, SUI X, et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering. Journal of Materials Science & Technology, 2019,35(11):2600-2607.
|
[24] |
KANG B, KONG T, RAZA A, et al. Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids. International Journal of Refractory Metals and Hard Materials, 2019,81:15-20.
|
[25] |
LÜ S, ZU Y, CHEN G, et al. An ultra-high strength CrMoNbWTi-C high entropy alloy co-strengthened by dispersed refractory IM and UHTC phases. Journal of Alloys and Compounds, 2019,788:1256-1264.
|
[26] |
LONG Y, LIANG X, SU K, et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: microstructural evolution and mechanical properties. Journal of Alloys and Compounds, 2019,780:607-617.
|
[27] |
CHEN X J, STRUZHKIN V V, WU Z, et al. Hard superconducting nitrides. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(9):3198-3201.
URL
PMID
|
[28] |
WAHSH M M S, KHATTAB R M, ZAWEAH M F. Sintering and technological properties of alumina/zirconia/nano-TiO2 ceramic composites. Materials Research Bulletin, 2013,48(4):1411-1414.
|
[29] |
COUZINIÉ J P, SENKOV O N, MIRACLE D B, et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys. Data in Brief, 2018,21:1622-1641.
URL
PMID
|
[30] |
CHEN H, KAUFFMANN A, GORR B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. Journal of Alloys and Compounds, 2016,661:206-215.
|