无机材料学报 ›› 2020, Vol. 35 ›› Issue (3): 315-323.DOI: 10.15541/jim20190349 CSTR: 32189.14.10.15541/jim20190349

所属专题: 2020年环境材料论文精选(三)有机小分子去除 【虚拟专辑】污染物吸附水处理(2020~2021)

• 研究论文 • 上一篇    下一篇

生物源碳酸钙对污水中Pb(II)和甲基橙吸附行为的研究

杜旭东1,唐城元1,杨小丽2,程建波1,贾玉珂1,杨树斌1()   

  1. 1. 烟台大学 化学化工学院, 烟台 264005
    2. 华北水利水电大学 环境与市政工程学院, 郑州 450045
  • 收稿日期:2019-07-15 修回日期:2019-09-12 出版日期:2020-03-20 网络出版日期:2019-10-23
  • 作者简介:杜旭东(1995-), 男, 硕士研究生. E-mail: 2062296740@qq.com
  • 基金资助:
    国家自然科学基金(51708215);山东省自然科学基金-青年基金(ZR201807060384);烟台大学博士启动基金(HY18B04)

High-efficiency Biogenic Calcium Carbonate for Adsorption of Pb(II) and Methyl Orange from Wastewater

DU Xudong1,TANG Chengyuan1,YANG Xiaoli2,CHENG Jianbo1,JIA Yuke1,YANG Shubin1()   

  1. 1. School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
    2. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
  • Received:2019-07-15 Revised:2019-09-12 Published:2020-03-20 Online:2019-10-23
  • About author:DU Xudong (1995-), male, Master candidate. E-mail: 2062296740@qq.com
  • Supported by:
    National Natural Science Foundation of China(51708215);Shandong Provincial Natural Science Foundation(ZR201807060384);PhD Research Startup Foundation of Yantai University(HY18B04)

摘要:

实验采用廉价的牡蛎壳制备绿色、高效的生物源碳酸钙(bio-CaCO3)吸附材料, 用于去除污水中的Pb(II)和甲基橙(MO)。通过扫描电子显微镜(SEM), 热重分析(TGA), X射线荧光光谱分析(XRF)等表征方法对材料形貌、组成、结构等进行了分析。采用宏观吸附行为和微观表征研究bio-CaCO3对水体中Pb(II)和MO的吸附过程并阐明机理。研究发现, bio-CaCO3对MO的去除效率约为45% (msorbent/Vsolvent=0.2 g/L, [MO]initial=60 mg/L), SEM分析结果表明bio-CaCO3吸附MO后, 表面形貌发生了明显的变化。bio-CaCO3对Pb(II)的饱和吸附量高达1775 mg/g (pH=5.0, T=298 K), 优于传统的皂土、活性炭等吸附材料。bio-CaCO3吸附Pb(II)的主要吸附机理是CaCO3+Pb(II)→PbCO3, 该过程的ΔH θ=-7.64 kJ/mol, ΔS θ=-17.92 J/(mol·K), ΔG θ=-2.30 kJ/mol(pH=5.0, T=298 K), 吸附Pb(II)后产生大量形貌更加规则的四棱柱结构。研究表明实验制备的bio-CaCO3对Pb(II)和MO均具有良好的吸附性能, 是一种环境友好型高效吸附剂。

关键词: 生物源碳酸钙, Pb(II), 甲基橙, 吸附

Abstract:

A low-cost oyster shell was carried to prepare biogenic calcium carbonate (bio-CaCO3) to remediate Pb(II) and methyl orange (MO) from contaminated water. The morphology, composition and structure of the material were analyzed mainly by scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray fluorescence (XRF). The adsorption of Pb(II) and MO by bio-CaCO3 was studied by combining batch experiments and microstructure characterization. Batch sorption experiments showed that 45% MO was removed by bio-CaCO3 (msorbent/Vsolvent=0.2 g/L, [MO]initial=60 mg/L). An obviously morphology change took place after MO adsorbed onto bio-CaCO3. The maximum sorption capacity of bio-CaCO3 for Pb(II) is 1775 mg/g (pH=5.0, T=298 K), which is higher than that of the traditional nanomaterials such as bentonite and activated carbon. The Pb(II) removal mechanism is expected to be CaCO3+ Pb(II)→PbCO3, where the ΔH θ, ΔS θ and ΔG θ of Pb(II) sorption by bio-CaCO3 (pH=5.0, T=298K) are -7.64 kJ/mol, -17.92 J/(mol·K) and -2.30 kJ/mol, respectively. More regular products with quadrangular structure are formed after Pb(II) adsorption. The results highlight that the bio-CaCO3 has a high Pb(II) and MO sorption efficiency, demonstrating that it is a promising adsorbent material in environmental pollution management.

Key words: biogenic calcium carbonate, Pb(II), methyl orange, sorption

中图分类号: