[1] |
MA Q S, CHEN Z H, ZHENG W W , et al. Effects of pyrolysis processes on microstructure and mechanical properties of Cf/Si-O-C composites fabricated by preceramic polymer pyrolysis. Mater. Sci. Eng. A, 2003,352:212-216.
|
[2] |
PAPAKONSTANTINOU C G, BALAGURU P, LYON R E . Comparative study of high temperature composites. Composites Part B, 2001,32:637-649.
|
[3] |
NASLAIN R . Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol., 2004,64:155-170.
|
[4] |
KIM S Y, HAN I S, WOO SK , et al. Wear-mechanical properties of filler-added liquid silicon infiltration C/C-SiC composites. Materials and Design, 2013,44:107-113.
|
[5] |
DUTTA S . Fracture toughness and reliability in high-temperature structural ceramics and composites: prospects and challenges for the 21st century. Bull. Mater. Sci., 2001,24:117-120.
|
[6] |
ZHONG H, WANG Z, ZHOU H J , et al. Properties and microstructure evolution of Cf/SiC composites fabricated by polymer impregnation and pyrolysis (PIP) with liquid polycarbosilane. Ceram. Int.,2 2017,243:7387-7392.
|
[7] |
SAHA A, RAJ R . A model for the nanodomains in polymer- derived SiCO. J. Am. Ceram. Soc., 2006,89:2188-2195.
|
[8] |
PANTANO C, SINGH A, ZHANG H . Silicon oxycarbide glasses. J. Sol-Gel Sci. Technol., 1999,14(1):7-25.
|
[9] |
LIU H T, CHENG H F, WANG J , et al. Effects of the fiber surface characteristics on the interfacial microstructure and mechanical properties of the KD SiC fiber reinforced SiC matrix composites. Mater. Sci. Eng. A, 2009,525(1/2):121-127.
|
[10] |
WANG S, CHEN Z H, MA Q S , et al. Effect of fiber surface state on mechanical properties of Cf/Si-O-C composites. Mater. Sci. Eng. A, 2005,407:245-249.
|
[11] |
MA Q S, CHEN Z H, ZHENG W W , et al. Curing and pyrolysis of polysiloxane/divinylbenzene and its derived carbon fiber reinforced Si-O-C composites. J. Mater. Sci., 2005,40:361-365.
|
[12] |
XU T H, MA Q S, CHEN Z H . Mechanical property and microstructure evolutions of Cf/SiOC composites with increasing annealing temperature in reduced pressure environment. Ceram. Int., 2012,38:605-611.
|
[13] |
KASPARA J, GRACZYK Z M, CHOUDHURY S , et al. Impact of the electrical conductivity on the lithium capacity of polymer- derived silicon oxycarbide (SiOC) ceramics. Electrochimica Acta, 2016,216:196-202.
|
[14] |
IONESCU E, BALAN C, KLEEBE H J , et al. High-temperature creep behavior of SiOC glass-ceramics: influence of network carbon versus segregated carbon. J. Am. Ceram. Soc., 2014,97:3935-3942.
|
[15] |
MOSYAN C, RIEDEL R, HARSHE R , et al. Mechanical characterization of a polysiloxane-derived SiOC glass. J. Eur. Ceram. Soc., 2007,27:397-403.
|
[16] |
IONESCU E, LINCK C, FASEL C , et al. Polymer-derived SiOC/ ZrO2 ceramic nanocomposites with excellent high-temperature stability. J. Am. Ceram. Soc., 2010,93:241-250.
|
[17] |
KASPAR J, TERZIOGLU C, IONESCU E , et al. Stable SiOC/Sn nanocomposite anodes for lithium-ion batteries with outstanding cycling stability. Adv. Funct. Mater., 2014,24:4097-4104.
|
[18] |
SUO J, ZHENG W, XIAO J Y , et al. Optimized condition for precursor infiltration method. Aerosp. Mater. Technol., 2002,2:29-32.
|
[19] |
GARCIA M V, GUDE M R, URENA A . Understanding the curing kinetics and rheological behaviour of a new benzoxazine resin for carbon fibre composites. React. Funct. Polym., 2018,129:103-110.
|
[20] |
IONESCU E, PAOENDORF B, KLEEBE H J , et al. Polymer- derived silicon oxycarbide/hafnia ceramic nanocomposites. Part I: phase and microstructure evolution during the ceramization process. J. Am. Ceram. Soc., 2010,93:1774-1782.
|
[21] |
IONESCU E, PAOENDORF B, KLEEBE H J , et al. Polymer- derived silicon oxycarbide/hafnia ceramic nanocomposites. Part II: stability toward decomposition and microstructure evolution at T1000 degrees C. J. Am. Ceram. Soc., 2010,93:1783-1789.
|
[22] |
HARSHE R, BALAN C, RIEDEL R. Amorphous Si ( Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications. J. Eur. Ceram. Soc., 2004,24:3471-3482.
|
[23] |
LIU C, MENG X Y, ZHANG X H , et al. High temperature structure evolution of macroporous SiOC ceramics prepared by a Sol-Gel method. Ceram. Int., 2015,41:11091-11096.
|
[24] |
PAN J M, YAN X H, CHENG X N , et al. In situ synthesis and electrical properties of porous SiOC ceramics decorated with SiC nanowires. Ceram. Int., 2016,42:12345-12351.
|
[25] |
DUAN X Y, YIN X W, LUO C J , et al. Microwave-absorption properties of SiOC ceramics derived from novel hyperbranched ferrocene-containing polysiloxane. J. Eur. Ceram. Soc., 2017,37:2021-2030.
|
[26] |
MA Q S, CHEN Z H, ZHEN W W , et al. Processing and characterization of three-dimensional carbon fiber reinforced Si-O-C composites via precursor pyrolysis. Mater. Sci. Eng. A, 2003,352:212-216.
|
[27] |
XU T H, MA Q S, CHEN Z H . High-temperature behavior of Cf/SiOC composites in inert atmosphere. Mater. Sci. Eng. A, 2011,530:266-270.
|
[28] |
JIAN K, CHEN Z H, MA Q S , , et al. Processing and properties of 2D Cf/SiOC composites using silicone resin. Key Engineering Materials, 2007, 336-338:1251-1253.
|
[29] |
XU T H, CHEN Z H, MA Q S . Effect of the first cycle of precursor solution infiltration on the properties of 3D-Cf/Si-O-Cvia PIP. Rare Metal Materials and Engineering, 2008,37:600-603.
|
[30] |
DING Q, NI D W, WANG Z , et al. 3D Cf/SiBCN composites prepared by an improved polymer infiltration and pyrolysis. J. Adv. Ceram., 2018,7:266-275.
|