无机材料学报 ›› 2017, Vol. 32 ›› Issue (12): 1233-1242.DOI: 10.15541/jim20170066 CSTR: 32189.14.10.15541/jim20170066
• • 下一篇
田晓, 段如霞, 赵丽娟, 那仁格日乐
收稿日期:
2017-02-08
修回日期:
2017-04-17
出版日期:
2017-12-20
网络出版日期:
2017-11-21
作者简介:
田 晓(1972-), 女, 教授. E-mail: nsdtx@126.com
基金资助:
TIAN Xiao, DUAN Ru-Xia, ZHAO Li-Juan, NAREN Ge-Ri-Le
Received:
2017-02-08
Revised:
2017-04-17
Published:
2017-12-20
Online:
2017-11-21
摘要:
直接硼氢化物燃料电池(DBFC)具有理论电池电压高和能量密度大等特点, 而其阳极催化剂是决定电池性能的关键因素之一。因此, 研究者们在提高阳极催化剂催化活性和降低催化剂成本方面开展了大量的研究工作。本文在简要介绍DBFC工作原理和阳极反应机理的基础上, 从催化剂种类和性能角度综述了近年来DBFC中贵金属、过渡金属以及储氢合金阳极催化剂的主要研究进展, 指出了阳极催化剂研究所面临的问题, 同时提出了今后的发展方向。
中图分类号:
田晓, 段如霞, 赵丽娟, 那仁格日乐. 直接硼氢化物燃料电池(DBFC)阳极催化剂的研究进展[J]. 无机材料学报, 2017, 32(12): 1233-1242.
TIAN Xiao, DUAN Ru-Xia, ZHAO Li-Juan, NAREN Ge-Ri-Le. Anode Catalyst for the Direct Borohydride Fuel Cell[J]. Journal of Inorganic Materials, 2017, 32(12): 1233-1242.
Type | Electrocatalyst | Fuel | Oxidant | Theoretical data of open circuit voltage | Main existence question | Possible application fields |
---|---|---|---|---|---|---|
PEMFC | Pt | H2/Reformer hydrogen | Air/Pure oxygen | 1.23 V | Hydrogen supply system, catalyst cost | Hybrid electric vehicles, portable power source |
DMFC | Pt, Pt-Ru | Methanol | Air | 1.183 V | Catalyst poisoning, catalyst cost | A small mobile power source |
DBFC | Non-noble metal | Borohydride | Air/O2/ H2O2 | 1.64 V | Hydrolysis reaction, catalyst cost | Portable electronics, mobile power |
表1 常见低温燃料电池的技术状态
Table 1 Technical state of common low temperature fuel cells
Type | Electrocatalyst | Fuel | Oxidant | Theoretical data of open circuit voltage | Main existence question | Possible application fields |
---|---|---|---|---|---|---|
PEMFC | Pt | H2/Reformer hydrogen | Air/Pure oxygen | 1.23 V | Hydrogen supply system, catalyst cost | Hybrid electric vehicles, portable power source |
DMFC | Pt, Pt-Ru | Methanol | Air | 1.183 V | Catalyst poisoning, catalyst cost | A small mobile power source |
DBFC | Non-noble metal | Borohydride | Air/O2/ H2O2 | 1.64 V | Hydrolysis reaction, catalyst cost | Portable electronics, mobile power |
图2 贵金属单质用作DBFC阳极催化剂研究文献所占比例
Fig. 2 Percentage of reference on variously noble metal as DBFC anode catalyst According to the Web of Science (2000-2016)
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/(mW•cm-2) | Ref. |
---|---|---|---|---|---|
Au-Pt | MnO2 | Air | 25 | 20.0 | [25] |
Pt3-Au2 | Pt/C | Humidified O2 | 65 | 161.0 | [26] |
Pt1-Au1 | Pt-based | O2 | 60 | 47.0 | [18] |
Au1-Pd1 | Pt-based | O2 | 60 | 31.0 | [11] |
Pd | Pt/C | Humidified O2 | NA | ~185.0 | [27] |
Au | Pt/C | Humidified O2 | NA | ~82.0 | [27] |
5wt%Au-15wt%Pd | Pt/C | Humidified O2 | NA | ~120.0 | [27] |
10wt%Au-10wt%Pd | Pt/C | Humidified O2 | 50 | ~90.0 | [27] |
15wt%Au-5wt%Pd | Pt/C | Humidified O2 | 50 | ~75.0 | [27] |
Pt black | Pt black | NA | 60 | 31.6 | [28] |
Pt1-Ru1 black | Pt black | NA | 60 | 35.1 | [28] |
Au | Au/C | NA | 20 | ~28.0 | [30] |
Pd | Au/C | NA | 20 | ~41.0 | [30] |
Au2-Pd1 | Au/C | NA | 20 | ~46.0 | [30] |
Au1-Pd1 | Au/C | NA | 20 | ~49.0 | [30] |
Au1-Pd2 | Au/C | NA | 20 | 56.8 | [30] |
表2 二元贵金属作为阳极催化剂的DBFC的性能参数
Table 2 Performance data for DBFCs employing binary noble metal anodes
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/(mW•cm-2) | Ref. |
---|---|---|---|---|---|
Au-Pt | MnO2 | Air | 25 | 20.0 | [25] |
Pt3-Au2 | Pt/C | Humidified O2 | 65 | 161.0 | [26] |
Pt1-Au1 | Pt-based | O2 | 60 | 47.0 | [18] |
Au1-Pd1 | Pt-based | O2 | 60 | 31.0 | [11] |
Pd | Pt/C | Humidified O2 | NA | ~185.0 | [27] |
Au | Pt/C | Humidified O2 | NA | ~82.0 | [27] |
5wt%Au-15wt%Pd | Pt/C | Humidified O2 | NA | ~120.0 | [27] |
10wt%Au-10wt%Pd | Pt/C | Humidified O2 | 50 | ~90.0 | [27] |
15wt%Au-5wt%Pd | Pt/C | Humidified O2 | 50 | ~75.0 | [27] |
Pt black | Pt black | NA | 60 | 31.6 | [28] |
Pt1-Ru1 black | Pt black | NA | 60 | 35.1 | [28] |
Au | Au/C | NA | 20 | ~28.0 | [30] |
Pd | Au/C | NA | 20 | ~41.0 | [30] |
Au2-Pd1 | Au/C | NA | 20 | ~46.0 | [30] |
Au1-Pd1 | Au/C | NA | 20 | ~49.0 | [30] |
Au1-Pd2 | Au/C | NA | 20 | 56.8 | [30] |
图3 不同阳极催化剂下DBFC的功率密度曲线[37-38,40,42]
Fig. 3 Power density curves of the DBFC using different anode catalysts[37-38,40,42]^(a) 60℃; (b) 20℃; (c) 25℃; (d) 25℃
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/ (mW•cm-2) | Ref. |
---|---|---|---|---|---|
LmNi4.78Mn0.22 | Nickel foam | NA | NA | NA | [65] |
MmNi3.55Al0.3Mn0.4Co0.75 | FeTMPP/C | H2O2+H2SO4 | 70 | 82 | [66] |
MmNi3.55Al0.3Mn0.4Co0.75 | PbSO4/C | H2O2+H2SO4 | 70 | 120 | [66] |
MmNi3.35Co0.75Mn0.4Al0.3 | MnO2/C | O2 | 25 | 70 | [67] |
MmNi3.6Al0.4Mn0.3Co0.7 | Au/SS mesh | H2O2+H2SO4 | 25 | 50 | [68] |
MmNi3.55Co0.75Mn0.4Al0.3 | Iron phthalocyanin/C | Air | RT | 92 | [69] |
MmNi3.6Al0.4Mn0.3Co0.7 | PbSO4/C | H2O2+H2SO4 | 25 | 10 | [70] |
MmNi3.55Co0.75Mn0.4Al0.3 | Cobalt phthalocyanin | Air | RT | 90 | [71] |
MmNi3.55Co0.75Mn0.4Al0.3 | Prussian blue | H2O2+H2SO4+KCl | 30 | 68 | [72] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaNiO3/C | Air | 65 | 127 | [73] |
La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7 | Pd/C | Air | NA | 81 | [74] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaCoO3/C/Ni-foam | Air | RT | 65 | [62] |
LaMnNi3.55Al0.30Mn0.40Co0.75 | Nickel foam | Air | NA | NA | [61] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 85 | 190 | [75] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 60 | NA | [76] |
ZrCr0.8Ni1.2 | Pt/C | O2 | 25 | NA | [57] |
Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 | Pt/C | H2O2 | 70 | 70 | [77] |
表3 储氢合金作为阳极催化剂的DBFC的性能参数
Table 3 Performance data for DBFCs employing hydrogen storage alloy anodes
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/ (mW•cm-2) | Ref. |
---|---|---|---|---|---|
LmNi4.78Mn0.22 | Nickel foam | NA | NA | NA | [65] |
MmNi3.55Al0.3Mn0.4Co0.75 | FeTMPP/C | H2O2+H2SO4 | 70 | 82 | [66] |
MmNi3.55Al0.3Mn0.4Co0.75 | PbSO4/C | H2O2+H2SO4 | 70 | 120 | [66] |
MmNi3.35Co0.75Mn0.4Al0.3 | MnO2/C | O2 | 25 | 70 | [67] |
MmNi3.6Al0.4Mn0.3Co0.7 | Au/SS mesh | H2O2+H2SO4 | 25 | 50 | [68] |
MmNi3.55Co0.75Mn0.4Al0.3 | Iron phthalocyanin/C | Air | RT | 92 | [69] |
MmNi3.6Al0.4Mn0.3Co0.7 | PbSO4/C | H2O2+H2SO4 | 25 | 10 | [70] |
MmNi3.55Co0.75Mn0.4Al0.3 | Cobalt phthalocyanin | Air | RT | 90 | [71] |
MmNi3.55Co0.75Mn0.4Al0.3 | Prussian blue | H2O2+H2SO4+KCl | 30 | 68 | [72] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaNiO3/C | Air | 65 | 127 | [73] |
La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7 | Pd/C | Air | NA | 81 | [74] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaCoO3/C/Ni-foam | Air | RT | 65 | [62] |
LaMnNi3.55Al0.30Mn0.40Co0.75 | Nickel foam | Air | NA | NA | [61] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 85 | 190 | [75] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 60 | NA | [76] |
ZrCr0.8Ni1.2 | Pt/C | O2 | 25 | NA | [57] |
Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 | Pt/C | H2O2 | 70 | 70 | [77] |
[1] | ROSEN M A, KOOHI-FAYEGH S.The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems.Energy, Ecology and Environment, 2016, 1(1): 10-29. |
[2] | SONG M Y, PARK H R, KWON S N.Evaluation of the metal-added Mg hydrogen storage material and comparison with the oxide-added Mg.Journal of Industrial and Engineering Chemistry, 2015, 21: 378-386. |
[3] | DE LEON C P, WALSH F C, PLETCHER D,et al.Direct borohydride fuel cells. Journal of Power Sources, 2006, 155(2): 172-181. |
[4] | MA J, CHOUDHURY N A, SAHAI Y.A comprehensive review of direct borohydride fuel cells.Renewable and Sustainable Energy Reviews, 2010, 14(1): 183-199. |
[5] | MERINO-JIMENEZ I, DE LEON C P, SHAH A A,et al Developments in direct borohydride fuel cells and remaining challenges.Journal of Power Sources, 2012, 219: 339-357. |
[6] | OLU P Y, JOB N, CHATENET M,et al.Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: methods and benchmarks. Journal of Power Sources, 2016, 327: 235-257. |
[7] | YI L H, SONG Y F, YI W,et al Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells.International Journal of Hydrogen Energy, 2011, 36(18): 11512-11518. |
[8] | WEI J L, WANG X Y, WANG Y,et al Investigation of carbon- supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride.International Journal of Hydrogen Energy, 2009, 34(8): 3360-3366. |
[9] | CHATENET M, MICOUD F, ROCHE I,et al. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte-Part I. BH4- electro-oxidation on Au and Ag catalysts. Electrochimica Acta, 2006, 51(25): 5459-5467. |
[10] | CHENG H, SCOTT K.Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode.Electrochimica Acta, 2006, 51(17): 3429-3433. |
[11] | ATWAN M H, MACDONALD C L B, NORTHWOOD D O,et al.Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. Journal of Power Sources, 2006, 158(1): 36-44. |
[12] | CELIKKAN H, SAHIN M, AKSU M L,et al The investigation of the electrooxidation of sodium borohydride on variousmetal electrodes in aqueous basic solutions.International Journal of Hydrogen Energy, 2007, 32(5): 588-593. |
[13] | PONCE-DE-LEON C, BAVYKIN D V, WALSH F C. The oxidation of borohydride ion at titanate nanotube supported gold electrodes.Electrochemistry Communications, 2006, 8(10): 1655-1660. |
[14] | CONCHA B M, CHATENET M.Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media Part II. carbon-supported nanopaticles.Electrochimica Acta, 2009, 54(26): 6130-6139. |
[15] | LIU B H, LI Z P.A review: hydrogen generation from borohydride hydrolysis reaction.Journal of Power Sources, 2009, 187(2): 527-534. |
[16] | QIN H Y, CHEN K J, ZHU C,et al.High electrocatalytic activity for borohydride oxidation on palladium nanocubes enclosed by {200} facets. Journal of Power Sources, 2015, 299: 241-245. |
[17] | LIU B H, LI Z P, SUDA S.Electrocatalysts for the anodic oxidation of borohydrides.Electrochimica Acta, 2004, 49(19): 3097-3105. |
[18] | GYENGE E, ATWAN M, NORTHWOOD D.Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application fordirect borohydride fuel cell anodes.Journal of the Electrochemical Society, 2006, 153(1): A150-A158. |
[19] | CHENG H, SCOTT K, LOVELL K.Material aspects of the design and operation of direct borohydride fuel cells.Fuel Cells, 2006, 6(5): 367-375. |
[20] | LAM V W S, KANNANGARA D C W, ALFANTAZI A,et al Electrodeposited osmium three-dimensional anodes for direct borohydride fuel cells.Journal of Power Sources, 2012, 212: 57-65. |
[21] | LIU J, WANG H, WU C,et al Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell.International Journal of Hydrogen Energy, 2014, 39(12): 6729-6736. |
[22] | REZA O, JAHAN-BAKHSH R, ROUDABEH V.Pt nanoparticles/ graphene paste electrode for sodium borohydride electrooxidation.Journal of Solid State Electrochemistry, 2013, 17(1): 217-221. |
[23] | MARTINS M, ŠLJUKIĆ B, SEQUEIRA C A C,et al.Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells. International Journal of Hydrogen Energy, 2016, 41(25): 10914-10922. |
[24] | CHENG K, JIANG J T, KONG S Y,et al. Pd nanoparticles support on rGO-C@TiC coaxial nanowires as a novel 3D electrode for NaBH4 electrooxidation. International Journal of Hydrogen Energy, 2017, 42(5): 2943-2951. |
[25] | COOWAR F A, VITINS G, MEPSTED G O,et al Electrochemical oxidation of borohydride at nano-gold-based electrodes: application in direct borohydride fuel cells.Journal of Power Sources, 2008, 175(1): 317-324. |
[26] | KARADAG C I, BEHMENYAR G, BOYACI SAN F,et al Investigation of carbon supported nanostructured PtAu alloy as electrocatalyst for direct borohydride fuel cell.Fuel Cells, 2015, 15(2): 262-269. |
[27] | LEE H M, PARK S Y, PARK K T,et al Development of Au-Pd catalysts supported on carbon for a direct borohydride fuel cell.Research on Chemical Intermediates, 2008, 34(8/9): 787-792. |
[28] | LAM V W S, ALFANTAZI A, GYENGE E L. The effect of catalyst support on the performance of PtRu in direct borohydride fuel cell anodes.Journal of Applied Electrochemistry, 2009, 39(10): 1763-1770. |
[29] | MERINO-JIMENEZ I, JANIK M J, DE LEON C P,et al Pd-Ir alloy as an anode material for borohydride oxidation.Journal of Power Sources, 2014, 269: 498-508. |
[30] | WANG H, WANG X Y, HE P Y,et al. Performance of AuPd/C as anode catalyst of direct NaBH4-H2O2 fuel cell. The Chinese Journal of Nonferrous Metals, 2011, 21(2): 405-410. |
[31] | LI J, QIAN G C, ZHU Y X,et al Electrochemical behaviour of Pd-Ag/C towards sodium borohydride electrooxidation.Chemical Industry and Engineering, 2016, 33(5): 45-49. |
[32] | BALCIUNAITE A, SUKACKIENE Z, TAMASAUSKAITE- TAMASIUNAITE L,et al.CoB/Cu and PtCoB/Cu catalysts for borohydride fuel cells. Electrochimica Acta, 2017, 225: 255-262. |
[33] | LIU B H, LI Z P, SUDA S.Anodic oxidation of alkali borohydrides catalyzed by nickel.Journal of the Electrochemical Society, 2003, 150(3): A398-A402. |
[34] | LIU B H, LI Z P, ARAI K,et al Performance improvement of a micro borohydride fuel cell operating at ambient conditions.Electrochimica Acta, 2005, 50(18): 3719-3725. |
[35] | MALYALA R V, RODE C V, ARAI M,et al Activity, selectivity and stability of Ni and bimetallic Ni-Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its substituted derivatives.Applied Catalysis A General, 2000, 193(1/2): 71-86. |
[36] | JAMARD R, LATOUR A, SALOMON J,et al Study of fuel efficiency in a direct borohydride fuel cell.Journal of Power Sources, 2008, 176(1): 287-292. |
[37] | GENG X Y, ZHANG H M, YE W,et al Ni-Pt/C as anode electrocatalyst for a direct borohydride fuel cell.Journal of Power Sources, 2008, 185(2): 627-632. |
[38] | DUAN D H, LIANG J W, LIU H H,et al.The effective carbon supported coreeshell structure of Ni@Au catalysts for electro- oxidation of borohydride. International Journal of Hydrogen Energy, 2015, 40(1): 488-500. |
[39] | LIANG J W, LIU H H, WEI H K,et al. Studies of anode of sodium borohydride fuel cell. Chinese Journal of Power Sources, 2015, 39(10): 2119-2122. |
[40] | DUAN D H, WANG Q, LIU H H,et al Investigation of carbon- supported Ni@Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride.Journal of Solid State Electrochemistry, 2016, 20(10): 2699-2711. |
[41] | FENG R X, CAO Y L, AI X P,et al AgNi alloy used as anodic catalyst for direct borohydride fuel cells.Acta Physico-Chimica Sinica, 2007, 23(6): 932-934. |
[42] | LIU B H, LI Z P, SUDA S.Development of high-performance planar borohydride fuel cell modules for portable applications. Journal of Power Sources, 2008, 175(1): 226-231. |
[43] | SANTOS D M F, SLJUKIC B, AMARAL L,et al Nickel and nickel-cerium alloy anodes for direct borohydride fuel cells.Journal of the Electrochemical society, 2014, 161(5): F594-F599. |
[44] | SANTOS D M F, SLJUKIC B, AMARAL L,et al Nickel-rare earth electrodes for sodium borohydride electrooxidation.Electrochimica Acta, 2016, 190: 1050-1056. |
[45] | YU D M, SHEN Y, YE Z,et al The preparation and performance of high activity Ni-Cr binary catalysts for direct borohydride fuel cells.Chinese Science Bulletin, 2013, 58(20): 2435-2439. |
[46] | ZHIANI M, MOHAMMADI I.Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni-Co/C anode catalyst. Fuel, 2016, 166: 517-525. |
[47] | HE P Y, WANG X Y, FU P,et al The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell.International Journal of Hydrogen Energy, 2011, 36(15): 8857-8863. |
[48] | YI L H, WEI W, ZHAO C X,et al Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell.Electrochimica Acta, 2015, 158: 209-218. |
[49] | DUAN D H, LIU H H, WANG Q,et al.Kinetics of sodium borohydride direct oxidation on carbon supported Cu-Ag bimetallic nanocatalysts. Electrochimica Acta, 2016, 198: 212-219. |
[50] | BEHMENYAR G, AKIN A N.Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell.Journal of Power Sources, 2014, 249: 239-246. |
[51] | DUAN D H, YOU X, LIANG J W,et al Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells.Electrochimica Acta, 2015, 176: 1126-1135. |
[52] | YI L H, WEI W, ZHAO C X,et al Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell.Journal of Power Sources, 2015, 285: 325-333. |
[53] | CHENG H, SCOTT K.Investigation of Ti mesh-supported anodes for direct borohydride fuel cells. Journal of Applied Electrochemistry, 2006, 36(12): 1361-1366. |
[54] | LI S, YANG X D, ZHU H Y,et al Investigation of amorphous CoB alloy as the anode catalyst for a direct borohydride fuel cell.Journal of Power Sources, 2011, 196(14): 5858-5862. |
[55] | LI S, CHEN Y Z, YANG X D,et al Amorphous metal borides used as anode catalyst for DBFC.Battery Bimonthly, 2013, 43(6): 325-328. |
[56] | LI S, WANG L N, CHU J,et al Investigation of Au@Co-B nanoparticles as anode catalyst for direct borohydride fuel cells.International Journal of Hydrogen Energy, 2016, 41(20): 8583-8588. |
[57] | LEE S M, KIM J H, LEE H,et al The characterization of an alkaline fuel cell that uses hydrogen storage alloys.Journal of the Electrochemical Society, 2002, 149(5): A603-A606. |
[58] | WANG L B, MA C A, MAO X B,et al Rare earth hydrogen storage alloy used in borohydride fuel cells.Electrochemistry Communications, 2005, 7(12): 1477-1481. |
[59] | WANG L B, MA C A, MAO X B.LmNi4.78Mn0.22 alloy modified with Si used as anodic materials in borohydride fuel cells.Journal of Alloys and Compounds, 2005, 397(1/2): 313-316. |
[60] | YANG Z Z, WANG L B, GAO Y F,et al. LaNi4.5Al0.5 alloy doped with Au used as anodic materials in a borohydride fuel cell. Journal of Power Sources, 2008, 184(1): 260-264. |
[61] | GRAS M, SIERCZYNSKA A, LOTA K,et al The modification of anode material for direct borohydride fuel cell.Ionics, 2016, 22(12): 2539-2544. |
[62] | LI S, YANG X D, ZHU H Y,et al Hydrogen storage alloy and carbon nanotubes mixed catalyst in a direct borohydride fuel cell.Journal of Materials Science & Technology, 2011, 27(12): 1089-1093. |
[63] | WANG G L, CHENG Y H, ZHANG W C,et al. Electrocatalytic performances of MmNi3.2Al0.2Mn0.6Co1.0 modified with MnO2 for NaBH4 oxidation. Chemical Journal of Chinese Universities, 2010, 31(1): 153-156. |
[64] | SAN F G B, KARADAG C L, OKUR O,et al.Optimization of the catalyst loading for the direct borohydride fuel cell. Energy, 2016, 114: 214-224. |
[65] | WANG L B, MA C N, SUN Y M,et al. AB5-type hydrogen storage alloy used as anodic materials in borohydride fuel cell. Journal of Alloys Compounds, 2005, 391(1/2): 318-322. |
[66] | RAMAN R K, SHUKLA A K.Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells.Journal of Applied Electrochemistry, 2005, 35(11): 1157-1161. |
[67] | WANG Y G, XIA Y Y.A direct borohydride fuel cell using MnO2- catalyzed cathode and hydrogen storage alloy anode.Electrochemistry Communications, 2006, 8(11): 1775-1778. |
[68] | RAMAN R K, PRASHANT S K, SHUKLA A K.A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack.Journal of Power Sources, 2006, 162(2): 1073-1076. |
[69] | MA J F, WANG J, LIU Y N.Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell.Journal of Power Sources, 2007, 172(1): 220-224. |
[70] | RAMAN R K, SHUKLA A K.A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover.Fuel Cells, 2007, 7(3): 225-231. |
[71] | MA J F, LIU Y N, ZHANG P,et al A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode.Electrochemistry Communications, 2008, 10(1): 100-102. |
[72] | SELVARANI G, PRASHANT S K, SAHU A K,et al.A direct borohydride fuel cell employing Prussian Blue as mediated electron- transfer hydrogen peroxide reduction catalyst. Journal of Power Sources, 2008, 178(1): 86-91. |
[73] | MA J, LIU Y, LIU Y,et al. A membraneless direct borohydride fuel cell using LaNiO3-catalysed cathode. Fuel Cells, 2008, 8(6): 394-398. |
[74] | CHOUDHURY N A, SAHAI Y, BUCHHEIT R G.Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells.Electrochemistry Communications, 2011, 13(1): 1-4. |
[75] | LI Z P, LIU B H, ARAI K,et al A fuel cell development for using borohydrides as the fuel.Journal of the Electrochemical Society, 2003, 150(7): A868-A872. |
[76] | LI Z P, LIU B H, ARAI K,et al.Evaluation of alkaline borohydride solutions as the fuel for fuel cell. Journal of Power Sources, 2004, 126(1/2): 28-33. |
[77] | CHOUDHURY N A, RAMAN R K, SAMPATH S,et al An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant.Journal of Power Sources, 2005, 143(1/2): 1-8. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||