无机材料学报 ›› 2017, Vol. 32 ›› Issue (10): 1109-1114.DOI: 10.15541/jim20170036 CSTR: 32189.14.10.15541/jim20170036
汪为磊1,2,3, 刘卫丽1,3, 白林森3, 宋志棠1,3, 霍军朝1,3
收稿日期:
2017-01-17
出版日期:
2017-10-20
网络出版日期:
2017-09-21
作者简介:
汪为磊. E-mail: awelly@mail.sim.ac.cn
WANG Wei-Lei1,2,3, LIU Wei-Li1,3, BAI Lin-Sen3, SONG Zhi-Tang1,3, HUO Jun-Chao1,3
Received:
2017-01-17
Published:
2017-10-20
Online:
2017-09-21
About author:
WANG Wei-Lei(1990–), male, candidate of Master degree. E-mail: awelly@mail.sim.ac.cn
Supported by:
摘要:
为了提高氧化铝颗粒的CMP性能, 本工作探索了一种合适的改性方法。同时, 为了改善其化学机械性能, 通过与其表面羟基的硅烷化化学反应和与Al和仲胺的络合两种作用, 用N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷表面改性氧化铝颗粒。本工作给出了化学反应机理, 即N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷接枝到氧化铝表面。通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)表征了改性氧化铝颗粒的组成和结构。结果表明: N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷已被成功地接枝到氧化铝颗粒的表面, 导致改性比未改性的氧化铝颗粒具有更好的化学和机械性能。测试了未改性和改性的氧化铝颗粒在蓝宝石基底上的CMP性能。结果显示: 改性氧化铝颗粒比未改性氧化铝颗粒有更高的材料去除速率和更好的表面质量。即, 改性氧化铝颗粒在pH=10时比未改性氧化铝颗粒在pH=13.00时表现出更高的材料去除率, 这将为减少设备腐蚀提供新思路。
中图分类号:
汪为磊, 刘卫丽, 白林森, 宋志棠, 霍军朝. 氧化铝颗粒的表面改性及其在C平面(0001)蓝宝石衬底上的化学机械抛光(CMP)性质[J]. 无机材料学报, 2017, 32(10): 1109-1114.
WANG Wei-Lei, LIU Wei-Li, BAI Lin-Sen, SONG Zhi-Tang, HUO Jun-Chao. Surface Modified Alumina Particles and Their Chemical Mechanical Polishing (CMP) Behavior on C-plane (0001) Sapphire Substrate[J]. Journal of Inorganic Materials, 2017, 32(10): 1109-1114.
Elements in sample | Al2p | O1s |
---|---|---|
Binding energy/eV | 74.03 73.08 | 531.06 530.87 |
Table 1 Binding energy of abrasives containing before and after modified alumina particles
Elements in sample | Al2p | O1s |
---|---|---|
Binding energy/eV | 74.03 73.08 | 531.06 530.87 |
Atomic% | Al | O | C | N | Si |
---|---|---|---|---|---|
Unmodified alumina | 30.67 | 52.44 | 16.89 | 0 | 0 |
Modified alumina | 27.35 | 46.41 | 21.19 | 2.77 | 2.28 |
Table 2 Cmposition of elements on the surface of alumina particles before and after modification
Atomic% | Al | O | C | N | Si |
---|---|---|---|---|---|
Unmodified alumina | 30.67 | 52.44 | 16.89 | 0 | 0 |
Modified alumina | 27.35 | 46.41 | 21.19 | 2.77 | 2.28 |
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 73.8 |
AlN | 73.1 |
Table 3 Binding energy of Al2p
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 73.8 |
AlN | 73.1 |
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 531.10 |
Al2O3 | 530.30 |
Table 4 Binding energy of O1s
Chemical state | Band energy/eV |
---|---|
(-Si(OCH3)2O-)xAly | 531.10 |
Al2O3 | 530.30 |
pH | Type of particles | MRR (0.0001 g/30 min) | Before polishing Rq Roughness/nm | After polishing Rq Roughness/nm |
---|---|---|---|---|
10.00 | Pure alumina | 46 | 0.968 | 0.610 |
10.00 | Modified alumina | 127 | 0.610 | 0.329 |
10.00 | Modified alumina | 139 | 0.981 | 0.315 |
13.00 | Pure alumina | 93 | 0.916 | 0.552 |
13.00 | Modified alumina | 122 | 0.552 | 0.311 |
Table 5 Surface roughness (Rq) and material removal rate(MRR)by applying before and after modified alumina particles in different pH
pH | Type of particles | MRR (0.0001 g/30 min) | Before polishing Rq Roughness/nm | After polishing Rq Roughness/nm |
---|---|---|---|---|
10.00 | Pure alumina | 46 | 0.968 | 0.610 |
10.00 | Modified alumina | 127 | 0.610 | 0.329 |
10.00 | Modified alumina | 139 | 0.981 | 0.315 |
13.00 | Pure alumina | 93 | 0.916 | 0.552 |
13.00 | Modified alumina | 122 | 0.552 | 0.311 |
Fig. 6 (a, b, f) AFM morphologies of sapphire substrate before polishing; (c) polished by pure alumina particles at pH 10.00; (d) polished by modified alumina particle (using sapphire substrate polished by pure alumina particles (c)) at pH 10.00; (e) polished by modified alumina particle at pH 10.00; (g) polished by modified alumina particle at pH 13.00; (h) polished by pure alumina particles (using sapphire substrate polished by pure alumina particles (g)) at pH 13.00
[1] | SAITO T, HIRAYAMA T, YAMAMOTO T, et al.Lattice strain and dislocations in polished surfaces on sapphire.J. Am. Ceram. Soc., 2005, 88: 2277-2285. |
[2] | NIU X H, LIU Y L, TAN B M, et al.Method of surface treatment on sapphire substrate.Transactions of Nonferrous Metals Society of China, 2006, 16: 732-734. |
[3] | TAKEUCHI T, TAKEUCHI H, SOTA S, et al.Optical properties of strained AlGaN and GaInN on GaN.Jpn. J. Appl. Phys., 1997, 36: L177-L179. |
[4] | LIMA R S, MARPLE B R.Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review.J. Therm. Spray Technol., 2007, 16: 40-63. |
[5] | KIM K T, KOO H Y, LEE G G, et al.Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders.Mater. Lett. , 2012, 82: 141-144. |
[6] | ZOIS D, LEKATOU A, VARDAVOULIAS M, et al.Nanostructured alumina coatings manufactured by air plasma spraying: correlation of properties with the raw powder microstructure.J. Alloys Compd., 2010, 495: 611-616. |
[7] | TANG E J, CHENG G X, MA X L, et al.Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system.Appl. Surf. Sci., 2006, 252: 5227-5232. |
[8] | LEI H, LU H S, LUO J B, et al.Preparation of α-alumina- g-polyacrylamide composite abrasive and chemical mechanical polishing behavior.Thin Solid Films, 2008, 516: 3005-3008. |
[9] | LEI H, ZHANG P Z.Preparation of alumina/silica core-shell abrasives and their CMP behavior.Appl. Surf. Sci., 2007, 253: 8754-8761. |
[10] | ZHANG Z F, LEI H.Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate.Microelectron. Eng., 2008, 85: 714-720. |
[11] | SHEN X C, FANG X Z, ZHOU Y H, et al.Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superpar- amagnetic magnetite nanoparticles.Chem. Lett., 2004, 33: 1468-1469. |
[12] | ZHANG Z F, YU L, LIU W L, et al.Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate.Appl. Surf. Sci., 2010, 256: 3856-3861. |
[13] | HOMMA Y.Dynamical mechanism of chemical mechanical polishing analyzed to correct Preston's empirical model.J. Electroanal. Chem., 2006, 153: G587-G590. |
[14] | MATSUDA T, TAKAHASHI H, TSURUGAYA M, et al.Characteristics of abrasive-free micelle slurry for copper CMP.J. Electrochem. Soc., 2003, 150: G532-G536. |
[15] | ABIADE J T, CHOI W, SINGH R K.Effect of pH on ceria-silica interactions during chemical mechanical.J. Mater. Res., 2005, 20: 1139-1145. |
[16] | LIANG H, CRAVEN D R.Tribology in Chemical-Mechanical Planarization. Taylor & Francis, Boca Raton, Fla., 2005. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||