无机材料学报 ›› 2016, Vol. 31 ›› Issue (10): 1013-1022.DOI: 10.15541/jim20160188 CSTR: 32189.14.10.15541/jim20160188
王连军, 周蓓莹, 顾士甲, 江 莞
收稿日期:
2016-03-28
修回日期:
2016-05-21
出版日期:
2016-10-20
网络出版日期:
2016-09-23
基金资助:
WANG Lian-Jun, ZHOU Bei-Ying, GU Shi-Jia, JIANG Wan
Received:
2016-03-28
Revised:
2016-05-21
Published:
2016-10-20
Online:
2016-09-23
Supported by:
摘要:
由于具有高透过率、优异的化学稳定性和易于机械加工等优势, 硅基氧化物玻璃是一种理想的基质材料。通过引入不同的发光组分, 获得不同光学性能的光功能玻璃被广泛应用于多个领域。然而, 这些发光组分在玻璃制备过程中易挥发、分解, 稳定性较低, 所以功能发光玻璃的制备技术仍面临着新的挑战。本文综述了掺杂铋离子、量子点及荧光粉硅基发光玻璃的发展现状及其制备技术。通过比较高温熔融法、溶胶-凝胶法、固相烧结法及放电等离子体烧结技术(简称SPS)的优缺点, 本文着重介绍了SPS技术应用于发光玻璃制备的研究进展及优势, 并对这种新制备技术的发展趋势进行了评述和展望。
中图分类号:
王连军, 周蓓莹, 顾士甲, 江 莞. 硅基氧化物发光玻璃及其制备技术研究进展[J]. 无机材料学报, 2016, 31(10): 1013-1022.
WANG Lian-Jun, ZHOU Bei-Ying, GU Shi-Jia, JIANG Wan. Research Progress on Silicon-based Luminescent Glass and Its Preparation Techniques[J]. Journal of Inorganic Materials, 2016, 31(10): 1013-1022.
图2 掺杂CdS纳米颗粒的介孔二氧化硅玻璃层随老化时间变化的荧光谱图[26]
Fig. 2 Photoluminescence (PL) spectral evolution of CdS NPs incorporated mesoporous SiO2 film with respect to ageing time as indicated in the figure in ambient condition[26]
图3 (a)不同热处理时间的掺杂CdSe量子点玻璃LEDs的色谱图, LEDs发光照片位于右侧; (b)和(c)为LED的电致发光与光致发光谱图[27]
Fig. 3 (a) CIE color coordination of the LEDs with silicate glass embedded CdSe QDs for varying duration times. The actual photographs of the LEDs were displayed on the right side. The insets (b) and (c) show EL + PL spectra of the LEDs[27]
图8 (a)SBA-15粉体, (b)经SPS于1173K烧结得到的样品, (c)经SPS于1293K烧结得到的硅基玻璃的TEM照片, (d)在温度与压力作用下, 介孔结构坍塌转换成玻璃的示意图[40]
Fig. 8 TEM images of original SBA-15 (a), sintered sample treated by SPS at 1173 K (b) and the silica glass sintered by SPS at 1293 K (c). Schematic of collapse of mesoporous structure and transformation to glass under combination of temperature and pressure(d)[40]
图10 (a)掺杂Ag纳米颗粒的SBA-15粉体的TEM图片,(b)Ag纳米颗粒的HRTEM图片, (c)烧结样品的TEM图片, (d)(c)图中黑点的EDX图谱[69]
Fig. 10 (a) TEM image of Ag NPs/SBA-15 and (b) HRTEM image of single Ag nanoparticle from (a); (c) TEM image of the sintered sample and (d) EDX spectrum taken on the dark spherical spots in (c)[69]
[1] | BEECROFT L L, OBER C K.Nanocomposite materials for optical applications.Chem. Mater., 1997, 9(6): 1302-1317. |
[2] | SNIZER E.Optical maser action of Nd3+ in a barium crown glass.Phys. Rev. Lett., 1961, 7(12): 444-446. |
[3] | ZHENG C, CHEN W Z, YE X Y, et al.Preparation and optical limiting properties of carbon nanotubes coated with Au nanoparticle composites embedded in silica gel-glass.Mater. Lett., 2011, 65(2): 150-152. |
[4] | WANG Y H, JIANG C Z, REN F, et al.Effect of ingredient on optical properties of Ag/Cu metal alloy nanoclusters in silica glass.J. Mater. Sci., 2007, 42(17): 7294-7298. |
[5] | BOURHIS K, MASSERA J, PETIT L, et al.Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties.Mater. Res. Bull., 2015, 70: 47-54. |
[6] | OLIVEIRA S L, LIMA S M, CATUNDA T, et al.High fluorescence quantum efficiency of 1.8 mum emission in Tm-doped low silica calcium aluminate glass determined by thermal lens spectrometry.Appl. Phys. Lett., 2004, 84(3): 359-361. |
[7] | GOLUBKOV V V, ONUSHCHENKO P A, ONUSHCHENKO A A.The kinetics of the formation of CdSe nanocrystals in sodium-zinc-silica glass.Glass. Phys. Chem. , 2014, 40(3): 291-297. |
[8] | TAKAHASHI T, ADACHI S.Synthesis of K2SiF6: Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution.Electrochem. Solid. St., 2009, 12(8): J69-J71. |
[9] | CHEN H, LIN H, XU J, et al.Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs.J. Mater. Chem. C, 2015, 3: 8080-8089. |
[10] | HAO S H, TANG H, WANG W X.Effect of anti-cracking agent on cracking property of SiO2 optical fiber preform by Sol-Gel method.Adv. Mater. Res., 2013, 763: 170-173. |
[11] | HICHAM EH, MOHAMED B, BRUNO C.Raman investigation of germanium- and phosphorus-doping effects on the structure of sol-gel silica-based optical fiber preforms.J. Mol. Struct., 2015, 1099: 77-82. |
[12] | ORRU R, LICHERI R, LOCCI A, et al.Consolidation/synthesis of materials by electric current activated/assisted sintering. Mat. Sci. Eng. R. 2009, 63(4): 127-287. |
[13] | WANG L, JIANG W, AND ZHANG J.Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering.Int. J. Refract. Met. H., 2013, 39: 103-112. |
[14] | FUJIMOTO Y, NAKATSUKA M.Infrared luminescence from bismuth-doped silica glass.Jpn. J. Appl. Phys. Par. 2., 2001, 40(3B): L279-L281. |
[15] | YANG R, MAO M F, ZHANG Y.Broadband near-infrared emission from Bi-Er-Tm Co-doped germanate glasses.J. Non-cryst. Solids., 2011, 357(11/12/13): 2396-2399. |
[16] | YANG Z W, SHANG J H, SONG Z G, et al.Influence of B2O3 on broad infrared emissions from aluminosilicophosphate glass.Adv. Appl. Ceram., 2011, 110(4): 215-218. |
[17] | KULESHOV N V, SHCHERBITSKY V G, MIKHAILOV V P, et al.Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4.J. Lumin., 1997, 71(4): 265-268. |
[18] | XIAN F, TANABE S.Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses.Optic. Mater., 2002, 20(1): 63-72. |
[19] | SUN H, ZHOU J, AND QIU J.Recent advances in bismuth activated photonic materials.Prog. Mater. Sci., 2014, 64: 1-72. |
[20] | REN J J, YANG L Y, QIU J R, et al.Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses.Solid State Commun., 2006, 140(1): 38-41. |
[21] | RESCH G U, GRABOLLE M, CAVALIERE J S, et al.Quantum dots versus organic dyes as fluorescent labels.Nat. Methods, 2008, 5(9): 763-775. |
[22] | MONTE A F G. Semiconductor doped glasses.J. Ceram. Soc. Jpn., 2008, 116(1358): 1033-1039. |
[23] | ZIEGLER J, XU S, KUCUR E, et al.Silica-coated InP/ZnS nanocrystals as converter material in white LEDs.Adv. Mater., 2008, 20(21): 4068-4073. |
[24] | CAO Y, ZHANG A, MA Q, et al.Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.Luminescence, 2013, 28(3): 287-293. |
[25] | HAN N, LIU C, ZHANG J, et al.Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur.J. Non-cryst. Solids., 2014, 391: 39-42. |
[26] | MISHRA M K, MANDAL A, SAHA J, et al.CdS nanoparticles incorporated onion-like mesoporous silica films: ageing-induced large stokes shifted intense PL emission.Opt. Mater., 2013, 35(12): 2604-2612. |
[27] | HAN K, SUKEUN Y, WOON J C.CdS and CdSe Quantum dot-embedded silicate glasses for LED color converter. Int. J. Appl. Glass. Sci., 2015, 6(2): 103-108. |
[28] | SOHN I S, UNITHRATTIL S, IM W B.Stacked quantum dot embedded silica film on a phosphor plate for superior performance of white light-emitting diodes.ACS Appl. Mater. Inter., 2014, 6(8): 5744-5748. |
[29] | MENEGHESSO G, LEVADA S, ZANONI E, et al.Reliability of visible GaN LEDs in plastic package.Microlelectron. Reliab., 2003, 43: 1737-1742. |
[30] | YANAGISAWA T, KOJIMA T.Long-term accelerated current operation of white light-emitting diodes.J. Lumin., 2005, 114: 39-42. |
[31] | PIAO X, MACHIDA K, HORIKAWA T, et al.Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties.Chem. Mater., 2007, 19(18): 4592-4599. |
[32] | YANES A C, DELCASTILLO J.Enhanced emission via energy transfer in RE co-doped SiO2-KYF4 nano-glass-ceramics for white LEDs.J. Alloys Compd., 2016, 658(15): 170-176. |
[33] | YE S, XIAO F, PAN Y X, et al.Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties.Mat. Sci. Eng. R., 2010, 71(1): 1-34. |
[34] | CHEN D Q, WAN Z Y, ZHOU Y, et al.Bulk glass ceramics containing Yb3+/Er3+: beta-NaGdF4 nanocrystals: Phase-separation- controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior.J. Alloys. Compd., 2015, 638: 21-28. |
[35] | WANG J, TSAI C C, CHENG W C, et al.High thermal stability of phosphor-converted white light emitting diodes employing Ce: YAG-doped glass.IEEE J. Sel. Topics Quantum Electron., 2011, 17(3): 741-746. |
[36] | TSAI C C, CHENG W C, CHANG J K, et al.Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes.J. Display Technol., 2013, 9(6): 427-432. |
[37] | ZHANG R, LIN H, YU Y L, et al.A new-generation color converter for high-power white LED: transparent Ce3+: YAG phosphor-in-glass.Laser. Photonics. Rev., 2014, 8(1): 158-164. |
[38] | TSAI C C.Thermal aging performance analyses of high color rendering index of glass-based phosphor-converted white-light- emitting diode.IEEE T. Device. Mat. Re., 2015, 15(4): 617-620. |
[39] | WANG L J, JIANG W, CHEN L D, et al.Formation of a unique glass by spark plasma sintering of a zeolite.J. Mater. Res., 2009, 24(10): 3241-3245. |
[40] | ZHANG X, YU X W, ZHOU B Y, et al.Sinterability enhancement by collapse of mesoporous structure of SBA-15 in fabrication of highly transparent silica glass.J. Am. Ceram. Soc., 2015, 98(4): 1056-1059. |
[41] | 王连军, 顾士甲, 张延, 等.一种荧光粉复合硅基介孔材料的发光玻璃及其制备方法, 中国发明专利. ZL201310088702.5. 2013.03.19. |
[42] | 王连军, 江莞, 陈立东, 等.块体功能玻璃的制备方法, 中国发明专利. ZL200810200173.2. 2008.09.19. |
[43] | PENG M, QIU J R, CHEN D P, et al.Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.Opt. Express, 2005, 13(18): 6892-6898. |
[44] | LI Y J, SONG Z G, LI C, et al.Effects of alkaline earth ions on the broadband near infrared emissions of Bi doped aluminophosphsilicate glasses.Mater. Chem. Phys., 2013, 139: 851-855. |
[45] | HUGHES M A, SUKZUKI T, OHISHI Y.Spectroscopy of bismuth-doped lead-aluminum-germanate glass and yttrium-aluminum- silicate glass.J. Non-cryst. Solids., 2010, 356: 2302-2309. |
[46] | XU K, LIU C, CHUNG W J, et al.Optical properties of CdSe quantum dots in silicate glasses.J. Non-cryst. Solids., 2010, 356(44-49): 2299-2301. |
[47] | GHAEMI B, ZHAO G, JIE G, et al.A study of formation and photoluminescence properties of ZnO quantum dot doped zinc-alumino-silicate glass ceramic.Opt. Mater., 2011, 33(6): 827-830. |
[48] | DONG G P, WU B T, ZHANG F T, et al.Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses.J. Alloys Compd., 2011, 509(38): 9335-9339. |
[49] | LEE Y K, LEE J S, HEO J, et al.Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications.Opt. Lett., 2012, 37(15): 3276-3278. |
[50] | CHEN L Y, CHANG J K, WU Y R, et al.Optical model for novel glass-based phosphor-converted white light-emitting diodes.J. Display Technol., 2013, 9(6): 441-446. |
[51] | ZHOU S, JIANG N, ZHU B, et al.Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers.Adv. Funct. Mater., 2008, 18(9): 1407-1413. |
[52] | NOGAMI M, KATO A.Oxidation of cadmium chalcogenide microcrystals doped in silica glasses prepared by the Sol-Gel process. J. Non-cryst. Solids., 1993, 163(3): 242-248. |
[53] | YU Y, CHEN D, HUANG P, et al.Structure and luminescence of Eu3+ doped glass ceramics embedding ZnO quantum dots.Ceram. Int., 2010, 36(3): 1091-1094. |
[54] | SELVAN S T, BULLEN C, ASHOKKUMAR M, et al.Synthesis of tunable, highly luminescent QD-glasses through Sol-Gel processing.Adv. Mater., 2001, 13(12/13): 985-988. |
[55] | HAMZAOUI HE, COURTHÉOUX L, NGUYEN VN, et al. From porous silica xerogels to bulk optical glases: the control of densification.Mater. Chem. Phys., 2010, 121(1/2): 83-88. |
[56] | KUCZYNSKI G.Study of the sintering of glass.J. Appl. Phys., 1949, 20: 1160-1163. |
[57] | RABINOVICH E.Preparation of glass by sintering.J. Mater. Sci., 1985, 20: 4259-4297. |
[58] | UCHUINO T, YAMADA T.White light emission from transparent SiO2 glass prepared from nanometer-sized.J. Appl. Phys., 2004, 85(7): 1164-1166. |
[59] | YAMADA T, NAKAJIMA M, SUEMOTO T, et al.Formation and photoluminescence characterization of transparent silica glass prepared by solid-phase reaction of nanometer-sized silica particles.J. Phys. Chem. C, 2007, 111(35): 12973-12979. |
[60] | SHEN Z J, LIU J, GRINS J, et al.Effective grain alignment in Bi4Ti3O12 ceramics by superplastic-deformation induced directional dynamic ripening.Adv. Mater., 2005, 17(6): 676-680. |
[61] | RIELLO P, BUCELLA S, ZAMENGO L, et al.Erbium-doped LAS glass ceramics prepared by spark plasma sintering (SPS).J. Eur. Ceram. Soc., 2006, 26(15): 3301-3306. |
[62] | MAYERHOFER T G, SHEN Z, LEONOVA E, et al.Consolidated silica glass from nanoparticles.J. Solid State Chem., 2008, 181(9): 2442-2447. |
[63] | ZHANG J, TU R, GOTO T.Fabrication of transparent SiO2 glass by pressureless sintering and spark plasma sintering.Ceram. Int., 2012, 38(4): 2673-2678. |
[64] | WANG L, WANG L J, JIANG W, et al.The investigation of order-disorder transition process of ZSM-5 induced by spark plasma sintering.J. Solid State Chem., 2014, 212: 128-133. |
[65] | GU S J, ZHANG X, WANG L J, et al.Direct indication of a higher central temperature achieved during spark plasma sintering process of a zeolite.J. Eur. Ceram. Soc., 2015, 35(5): 1599-1603. |
[66] | GONG Y, CHEN H R, HE Q J, et al.Preparation of Er3+/Yb3+ co-doped zeolite-derived silica glass and its upconversion luminescence property.Ceram. Int., 2013, 39(8): 8865-8868. |
[67] | GU S J, ZHOU B Y, LUO W, et al.Near-infrared broadband photoluminescence of bismuth-doped zeolite-derived silica glass prepared by SPS. J. Am. Ceram. Soc., 2016, 99(1): 121-127. |
[68] | ZHANG X, LUO W, WANG L, et al.Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles.J. Mater. Chem. C, 2014, 2(34): 6966-6970. |
[69] | ZHANG X, GU S J, ZHOU B Y, et al.Solid-state sintering of glasses with optical nonlinearity from mesoporous powders.J. Am. Ceram. Soc., 2016, DOI: 10.1111/jace.14172. |
[70] | 王连军, 顾士甲, 王明辉, 等.一种铋离子掺杂微孔分子筛制备近红外发光玻璃的方法, 中国发明专利, ZL201310190453.0. 2013.05.21. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 范小暄, 郑永炅, 徐丽荣, 姚子敏, 曹硕, 王可心, 王绩伟. 基于富氧空位LiYScGeO4: Bi3+长余辉光催化剂的自激活余辉驱动有机污染物芬顿降解[J]. 无机材料学报, 2025, 40(5): 481-488. |
[8] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[9] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[10] | 陈梓, 张爱迪, 龚克, 刘海华, 禹钢, 单青松, 刘勇, 曾海波. 具有可调谐和长寿命荧光发射的高亮度、单分散四元CuInZnS@ZnS量子点[J]. 无机材料学报, 2025, 40(4): 433-339. |
[11] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[12] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[13] | 潘泽晟, 游雅萍, 郑雅, 陈海杰, 王连军, 江莞. 面向紫光激发白光LED用荧光材料的耐候性[J]. 无机材料学报, 2025, 40(3): 314-322. |
[14] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[15] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||