无机材料学报 ›› 2015, Vol. 30 ›› Issue (7): 673-682.DOI: 10.15541/jim20140617 CSTR: 32189.14.10.15541/jim20140617
• • 下一篇
王艳香, 罗 俊, 郭平春, 赵学国, 杨志胜, 朱 华, 孙 健
收稿日期:
2014-11-28
修回日期:
2015-01-22
出版日期:
2015-07-20
网络出版日期:
2015-06-25
基金资助:
WANG Yan-Xiang, LUO Jun, GUO Ping-Chun, ZHAO Xue-Guo, YANG Zhi-Sheng, ZHU Hua, SUN Jian
Received:
2014-11-28
Revised:
2015-01-22
Published:
2015-07-20
Online:
2015-06-25
Supported by:
摘要:
杂化钙钛矿是近年来发展非常迅速的一类新型光电材料。自从2009年日本学者首次研究钙钛矿敏化太阳电池, 经过五年的发展, 有机铅卤化物钙钛矿太阳电池光电转换效率从最初的3.1%跃升到19.3%。本文介绍了有机铅卤化物钙钛矿的结构及其在有机/无机杂化钙钛矿太阳电池中的应用, 并从有机铅卤化物钙钛矿太阳电池的发展历程、器件结构、制备方法等方面做了总结。最后简要讨论了钙钛矿太阳电池的长期稳定性、环境问题, 并就未来发展趋势进行展望。
中图分类号:
王艳香, 罗 俊, 郭平春, 赵学国, 杨志胜, 朱 华, 孙 健. 杂化钙钛矿材料在太阳电池中的应用与发展[J]. 无机材料学报, 2015, 30(7): 673-682.
WANG Yan-Xiang, LUO Jun, GUO Ping-Chun, ZHAO Xue-Guo, YANG Zhi-Sheng, ZHU Hua, SUN Jian. Application and Development of Hybrid Perovskite Materials in the Field of Solar Cells[J]. Journal of Inorganic Materials, 2015, 30(7): 673-682.
图 1 单胺(a)和二胺(b)有机阳离子的<100>取向层状钙钛矿结构示意图[2]
Fig. 1 Schematic representation of single-layer(100)-oriented perovskites with (a) monammonium (b)diammonium organic cations[2]
图3 TiO2基有机铅卤化物钙钛矿受光激发和电子传输的示意图(a)和钙钛矿敏化太阳电池的入射光电转换效率图谱(b)[5]
Fig. 3 A schematic illustration of organolead halide perovskite sensitized TiO2 undergoing photoexcitation and electron transfer (a) and the incident photon to electron conversion efficiency (IPCE) spectra for perovskite sensitized solar cells (b)[5]
图 4 CH3NH3Pb(I1-xBrx)3的紫外-可见光吸收光谱(a), TiO2/ CH3NH3Pb(I1-xBrx)3双层纳米复合物在FTO玻璃基板上的三维图像(b)和 CH3NH3Pb(I1-xBrx)3的带隙与Br的组成成分(x)的二次函数关系(c)[16]
Fig. 4 a) UV/Vis absorption spectra of CH3NH3Pb(I1-xBrx)3; b) Pictures of 3D TiO2/CH3NH3Pb(I1-xBrx)3 bilayer nanocomposites on FTO glass substrates; c) Quadratic relationship of the band gaps of CH3NH3Pb(I1-xBrx)3 as a function of Br composition (x)[16]
Composition | Bandgap/eV | Structure at room temperature |
---|---|---|
CH3NH3PbI3 | 1.50-1.61 | Tetragonal[ |
CH3NH3PbBr3 | 2.32 | Cubic[ |
CH3NH3PbCl3 | 3.10 | Cubic[ |
CH3NH3PbI3-xClx | 1.55-1.64 | Tetragona[ |
HC(NH2)2PbI3 | 1.47 | Tetragona[ |
表1 不同铅卤化物钙钛矿的性能
Table 1 Properties of different lead halide perovskites
Composition | Bandgap/eV | Structure at room temperature |
---|---|---|
CH3NH3PbI3 | 1.50-1.61 | Tetragonal[ |
CH3NH3PbBr3 | 2.32 | Cubic[ |
CH3NH3PbCl3 | 3.10 | Cubic[ |
CH3NH3PbI3-xClx | 1.55-1.64 | Tetragona[ |
HC(NH2)2PbI3 | 1.47 | Tetragona[ |
图5 (a)实际器件, (b)器件的断面结构图, (c)器件断面部分的SEM形貌图和(d)FTO/TiO2/钙钛矿/空穴层接触界面的结构图[15]
Fig. 5 (a) Real solid-state device; (b) Cross-sectional structure of the device; (c) Cross-sectional SEM image of the device; (d) Active layer-underlayer-FTO interfacial junction structure[15]
图 6 几种太阳电池技术的历史发展进程以及钙钛矿太阳电池结构的未来几种发展方向[40]
Fig. 6 Historic evolution of several kinds of solar cell technology and future directions for the structure of the perovskite solar cells[40]
Device structure | The types of photo anode films | Scaffold | Hole-selective contact |
---|---|---|---|
Mesoporous structure | Compact TiO2 | Meso-TiO2 | Spiro-OMeTAD[ |
Polymers[ | |||
Inorganic[ | |||
Meso-superstructured | Compact TiO2 | Meso-Al2O3 | Spiro-OMeTAD[ |
Meso-ZrO2 | |||
Planar heterojunction structure | Compact TiO2/ZnO | — | Spiro-OMeTAD[ |
表2 不同器件结构的钙钛矿太阳电池光阳极膜类型
Table 2 Types of photo anode films in a perovskite solar cell with different device structures
Device structure | The types of photo anode films | Scaffold | Hole-selective contact |
---|---|---|---|
Mesoporous structure | Compact TiO2 | Meso-TiO2 | Spiro-OMeTAD[ |
Polymers[ | |||
Inorganic[ | |||
Meso-superstructured | Compact TiO2 | Meso-Al2O3 | Spiro-OMeTAD[ |
Meso-ZrO2 | |||
Planar heterojunction structure | Compact TiO2/ZnO | — | Spiro-OMeTAD[ |
图 7 制备钙钛矿有效层的四种常用方法
Fig. 7 Four general methods to prepare perovskite active layers (a) One step precursor deposition method; (b) Sequential deposition method[30]; (c) Dual source vapour deposition[47]; (d) Vapor-assisted solution process[59]
图 8 空穴传输材料的结构示意图(a)和空穴传输材料的能级示意图(b)
Fig. 8 Structural representation of hole transporting materials (HTMs) (a) and energy level diagram of hole transporting materials (HTMs) (b)
图 9 器件结构和能带图
Fig. 9 Device architecture and energy level diagram (a) Schematics cross-sectional view of the perovskite solar cell configuration: FTO glass, compact TiO2 underlayer, mesoporous TiO2 with infiltrated CH3NH3PbI3, CuSCN HTM and gold; (b) Energy level diagram of the TiO2/CH3NH3PbI3/CuSCN/Au device showing ideal electron injection and hole extraction[54]
图 10 (A)基于完全可印刷介观太阳电池的三层层状钙钛矿横截面示意图和(B)三层结构的能带图[68]
Fig. 10 (A) Schematic illustration showing the cross section of the triple-layer perovskite-based fully printable mesoscopic solar cell and (B) energy band diagram of the triple-layer device[68]
[1] | MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure.Nature, 1994, 369(6480): 467-469. |
[2] | MITZI D B, CHONDROUDIS K, KAGAN C R.Organic-inorganic electronics.IBM J. Res. Dev., 2001, 45(1): 29-45. |
[3] | MITZI D B, DIMITRAKOPOULOS C D, ROSNER J, et al.Hybrid field-effect transistor based on a low-temperature melt- processed channel layer.Adv. Mater. 2002. 14(23): 1772-1776. |
[4] | CHENG Z Y, LIN J.Layered organic-inorganic hybrid perovskites structure, optical properties, film preparation, patterning and templating engineering.CrystEngComm, 2010, 12(10): 2646-2662. |
[5] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. |
[6] | IM J H, LEE C R, LEE J W, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[7] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[8] | BURSCHKA J, PELLET N, MOON S J, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature, 2013, 499(7458): 316-319. |
[9] | JEON N J, LEE H G, KIM Y C, et al.o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells.J. Am. Chem. Soc., 2014, 136(22): 7837-7840. |
[10] | ZHOU H P, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6169): 542-546. |
[11] | PARK N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.J. Phys. Chem. Lett., 2013, 4(15): 2423-2429. |
[12] | SINGH S P, NAGARJUNA P.Organometal halide perovskites as useful materials in sensitized solar cells.Dalton Trans., 2014, 43(14): 5247-5251. |
[13] | SARUKURA N, MURAKAMI H, ESTACIO E, et al.Proposed design principle of fluoride based materials for deep ultraviolet light emitting devices.Opt. Mater., 2007, 30(1): 15-17. |
[14] | ZHANG F, MAO Y B, PARK T J, et al.Green synthesis and property characterization of single-crystalline perovskite fluoride nanorods.Adv. Funct. Mater., 2008, 18(1): 103-112. |
[15] | KIM H S, LEE C R, IM J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci. Rep., 2012, 2: 591. |
[16] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Lett., 2013, 13(4): 1764-1769. |
[17] | KITAZAWA N, WATANABE Y, NAKAMURA Y.Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals.J. Mater. Sci., 2002, 37(17): 3585-3587. |
[18] | RHEE J H, CHUNG C C, DIAU E W G. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites.NPG Asia Mater., 2013, 5: e68; doi: 10.1038/am.2013.53. |
[19] | EDRI E, KIRMAYER S, CAHEN D, et al.High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite.Phys. Chem. Lett., 2013, 4(6): 897-902. |
[20] | BI D Q, YANG L, BOSCHLOO G, et al.Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells.J. Phys. Chem. Lett., 2013, 4(9): 1532-1536. |
[21] | EPERON G E, BURLAKOV V M, DOCAMPO P, et al.Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells.Adv. Funct. Mater., 2014, 24(1): 151-157. |
[22] | ETGAR L, GAO P, XUE Z S, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.J. Am. Chem. Soc., 2012, 134(42): 17396-17399. |
[23] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6165): 341-344. |
[24] | COLELLA S, MOSCONI E, FEDELI P, et al.MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties.Chem. Mater., 2013, 25(22): 4613-4618. |
[25] | WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al.High charge carrier mobilities and lifetimes in organolead trihalide perovskites.Adv. Mater., 2014, 26(10): 1584-1589. |
[26] | EDIR E, KIRMAYER S, KULBAK M, et al.Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells.J. Phys. Chem. Lett., 2014, 5(3): 429-433. |
[27] | STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G.Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg. Chem., 2013, 52(15): 9019-9038. |
[28] | LEE J W, SEOL D J, CHO A N, et al.High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3.Adv. Mater., 2014, 26(29): 4991-4998. |
[29] | EPERON G E, STRANKS S D, MENELAOU C, et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci., 2014, 7(3): 982-988. |
[30] | PANG S P, HU H, ZHANG J L, et al.NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells.Chem. Mater., 2014, 26(3): 1485-1491. |
[31] | YAMADA Y, NAKAMURA T, ENDO M, et al.Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes.Appl. Phys. Express., 2014, 7(3): 032302. |
[32] | GIACOMO F D, RAZZA S, MATTEOCCI F, et al.High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly (3-hexylthiophene) hole transport layer.J. Power Sources, 2014, 251: 152-156. |
[33] | MA Y Z, ZHENG L L, CHUNG Y S, et al.Highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx via sequential solution deposition.Chem. Commun., 2014, 50(83): 12458-12461. |
[34] | BALL J M, LEE M M, HEY A, et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells.Energy Environ. Sci., 2013, 6(6): 1739-1743. |
[35] | CHOI H, JEONG J, KIM H B, et al.Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells.Nano Energy, 2014, 7: 80-85. |
[36] | OGOMI Y, MORITA A, TSUKAMOTO S, et al.CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm.J. Phys. Chem. Lett., 2014, 5(6): 1004-1011. |
[37] | AHARON S, GAMLIEL S, COHEN B E, et al.Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.Phys. Chem. Chem. Phys., 2014, 16(22): 10512-10518. |
[38] | LABAN W A, ETGAR L.Depleted hole conductor-free lead halide iodide heterojunction solar cells.Energy Environ. Sci., 2013, 6(11): 3249-3253. |
[39] | SEO J, PARK S, KIM Y C, et al.Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells.Energy Environ. Sci., 2014, 7(8): 2642-2646. |
[40] | SNAITH H J.Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells.J. Phys. Chem. Lett., 2013, 4(21): 3623-3630. |
[41] | CAI B, XING Y D, YANG Z, et al.High performance hybrid solar cells sensitized by organolead halide perovskites.Energy Environ. Sci., 2013, 6(5): 1480-1485. |
[42] | QIU J H, QIU Y C, YAN K Y, et al.All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one- dimensional TiO2 nanowire arrays.Nanoscale, 2013, 5(8): 3245-3248. |
[43] | ZHANG W, SALIBA M, STRANKS S D, et al.Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.Nano Lett., 2013, 13(9): 4505-4510. |
[44] | XING G C, MATHEWS N, SUN S Y, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[45] | KIM H S, PARK N G, BISQUERT J.et al.Mechanism of carrier accumulation in perovskite thin absorber solar cells.Nat. Commun., 2013, 4: 2242. |
[46] | BI D Q, HÄGGMAN L, BOSCHLOO G, et al. Using a two step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures.RSC Adv., 2013, 3(41): 18762-18766. |
[47] | LIU M Z, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[48] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nat. Photon., 2013, 7: 486-491. |
[49] | KWON Y S, LIM J, YUN H J, et al.A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite.Energy Environ. Sci., 2014, 7(4): 1454-1460. |
[50] | MARIN-BELOQUI J M, HERNÁNDEZ J P, PALOMARES E. Photo-induced charge recombination kinetics in MAPbI3-xClx perovskite-like solar cells using low band-gap polymers as hole conductors.Chem. Commun., 2014, 50(93): 14566-14569. |
[51] | GUO Y L, LIU C, INOUE K, et al.Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer.J. Mater. Chem. A, 2014, 2(34): 13827-13830. |
[52] | JEON N G, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nat Mater, 2014, 13: 897-903. |
[53] | CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide.J. Am. Chem. Soc., 2014, 136(2): 758-764. |
[54] | QIN P, TANAKA S, ITO S, et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.Nat. Commun., 2014, 5: 3834. |
[55] | LI H R, FU K W, BOIX P P, et al.Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells.ChemSusChem, 2014, 7(12): 3420-3425. |
[56] | LIU D Y, KELLY T L.Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.Nat Photon., 2013, 8: 133-138. |
[57] | WU Y Z, ISLAM A, YANG X D, et al.Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition.Energy Environ. Sci., 2014, 7(9): 2934-2938. |
[58] | BARROWS A T, PEARSON A J, KWAK C, et al.Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition.Energy Environ. Sci., 2014, 7(9): 2944-2950. |
[59] | CHEN Q, ZHOU H P, HONG Z R, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.J. Am. Chem. Soc., 2014, 136(2): 622-625. |
[60] | CHUNG I, LEE B, HE J Q, et al.All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486-489. |
[61] | WU Z W, BAI S, XIANG J, et al.Efficient planar heterojunction perovskite solar cell employing graphene oxide as hole conductor.Nanoscale, 2014, 6(18): 10505-10510. |
[62] | SHI J J, DONG W, XU Y Z, et al.Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator- semiconductor back contact.Chin. Phys. Lett., 2013, 30(12): 128402. |
[63] | SHI J J, DONG J, LV S T, et al.Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property.Appl. Phys. Lett., 2014, 104(6): 063901. |
[64] | HAN H W, BACH U, CHENG Y B, et al.A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode.Appl. Phys. Lett., 2009, 94(10): 103102. |
[65] | KU Z L, RONG Y G, XU M, et al.Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode.Sci. Rep., 2013, 3: 3132. |
[66] | RONG Y G, HAN H W.Monolithic quasi solid state dye sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes.J. Nanophoton., 2013, 7(1): 073090. |
[67] | RONG Y G, KU Z L, MEI A Y, et al.Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes.J. Phys. Chem. Lett., 2014, 5(12): 2160-2164. |
[68] | MEI A Y, LI X, LIU L F, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[69] | SUPASAI T, RUJISAMPHAN N, ULLRICH K, et al.Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers.Appl. Phys. Lett., 2013, 103(18): 183906. |
[70] | LEIJTENS T, EPERON G E, PATHAK S, et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso superstructured organometal triHalide perovskite solar cells. Nat. Commun., 2014, 4: 2885. |
[71] | NIU G D, LI W Z, MENG F Q, et al.Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.J. Mater. Chem. A, 2014, 2(3): 705-710. |
[72] | MISRA R K, AHARON S, LI B L, et al.Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight.J. Phys. Chem. Lett., 2015, 6: 326-330. |
[73] | ZHENG L L, CHUNG Y H, MA Y Z, et al.A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability.Chem. Commun., 2014, 50(76): 11196-11199. |
[74] | HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al.Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.Nano Lett., 2014, 14(10): 5561-5568. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[12] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[13] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[14] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[15] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||