[1] YULIA M, ARTEM U, ALEXANDER S, et al. Nanoporous carbon-based electrode materials for supercapacitors. Solid State Ionics, 2013, 251(11): 59–61.
[2] HUO X T, ZHU P, HAN G Y. Preparation and performance of carbon/polypyrrole membranes as an electrode in supercapacitors. New Carbon Materials, 2013, 8(6): 414–420.
[3] MAJID B, WANG C L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS. Electrochimica Acta, 2011, 56(10): 9508–9514.
[4] SAADON S, SIDEK O. A review of vibration-based MEMS piezoelectric energy harvesters. Energy Conversion and Management, 2011, 52(1): 500–504.
[5] BEIDAGHI M, WANG C L. On-chip Micro-power: Three Di-mensional Structures for Micro-batteries and Micro-supercapacitors. Proceedings of the SPIE-The International Society for Optical Engineering, Orlando, 2010, 371(24): 7679–7691.
[6] CHEAH S K, PERRE E, ROOTH M, et al. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Letters, 2009, 9(9): 3230–3233.
[7] ZHU P, HAN G Y. Performance of MEMS microcapacitor based on polypyrole/graphene oxide electrodes. Journal of Functional Materials, 2013, 44(19): 2768–2772.
[8] DEEPAK P D, GIRISH S. G, RUDOLF H, et al. Solution-based binder-free synthetic approach of RuO2 thin films for all solid state supercapacitors. Electrochimica Acta, 2013, 103(7): 103–109.
[9] SHOYEBMOHAMAD F, SHAIKH J, YEON L, et al. Electrochemical supercapacitors of electrodeposited PANIH-RuO2 hybrid nanostructure. Current Applied Physics, 2013, 13(4): 758–761.
[10] JIN Y, CHEN H Y, CHEN M H, et al. Carbon nanotubepolyaniline grapheme composite paper and its electrochemical capacitance behaviors. Acta Physico-Chimica Sinica, 2012, 28(3): 609–614.
[11] LI B S, QI H X, ZHAI W T, et al. Electrosynthsis of large polypyrrole films by multi-potential steps method. Science China Technology Science, 2011, 54(7): 1697–1702.
[12] WANG X Y, HENG L P, YANG N L, et al. Preparation of polypyrrole/polyvinylalcohol (PPy/PVA) composite foam electrode material. Chinese Chemical Letters, 2010, 21(7): 884–887.
[13] ZHANG Q W, ZHOU X, YANG H S. Carbon foam materials prepared from polyacryonitrile and their application in electrochemical capacitors. Acta Polymerica Sinica, 2003, 12(5): 749–753.
[14] LIU Y F, HU Z H, REN L W. High-performance activated carbons for use in the electrodes of electric double-layer capacitors. New Carbon Materials, 2007, 24(4): 354–360.
[15] LU Y, YUAN J, HU Y D, et al. Preparation and performances of RuO2/CuO composite electrode materials. Journal of Functional Materials, 2013, 44(19): 2836–2839.
[16] SELLAM, HASHMI S A. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. ACS Applied Materials & Interfaces, 2013, 5(9): 3875–3883.
[17] WANG J, XU Y L, MA J H, et al. Supercapacitor electrode materials of nanostructured hydrous ruthenium oxide deposited by cyclic voltammetry method. Rare Metal Materials and Engineering, 2012, 41(8): 1467–1471.
[18] WEN C M, WEN Z Y, YOU Z, et al. Preparation and characterization of manganese oxide microelectrodes for microelectromechanical system supercapacitors. Journal of Nanoengineering and Nanosystems, 2014, 228(2): 77–81.
[19] HUANG X Q, GAN W P, YANG J, et al. Preparation and characteristic of Co-doped (RuO2/Co3O4)·nH2O composite film electrode. Materials Science and Engineering of Powder Metallurgy, 2013, 18(1): 107–112.
[20] HU A Z, ZHANG Y J, NU A L, et al. Synthesis and electrochemical characterization of RuO2·xH2O/graphite nano sheet composite array electrodes for supercapacitors. Acta Physico-Chimica Sinica, 2013, 29(2): 305–310.
[21] WU Z S, WANG D W, REN J, et al. Anchoring hydrous RuO2 on grapheme sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 2010, 20(1): 3595–3602.
[22] CHASTAIN J. Handbook of X-ray Photoelectron Spectroscopy. Perkin Elmer Corp., Minnesota, 1992. |