Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (4): 401-406.DOI: 10.15541/jim20180258
Previous Articles Next Articles
Ren-Jie GENG1,2,Song-Feng E2,Chao-Wei LI2,Tao-Tao LI2,Jun WU1(),Ya-Gang YAO2(
)
Received:
2018-06-08
Revised:
2018-08-27
Published:
2019-04-20
Online:
2019-04-15
Contact:
Supported by:
CLC Number:
Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film[J]. Journal of Inorganic Materials, 2019, 34(4): 401-406.
Fig. 6 Influence of the content of BNNSs on the elastic modulus of the BNNSs/PVA composite films with inset showing a picture of the composite film with 30wt% BNNSs
Fig. 7 In-plane (a) and out-plane (b) thermal diffusivity (white histogram) and thermal conductivity (shadow bar graph) of BNNSs/PVA composite films with different filler contents (0, 10wt%, 20wt% and 30wt%)
[1] | NOVOSELOV K S, GEIM A K, MOROZOV S V , et al. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-667. |
[2] | KEBLINSKI P, PHILLPOT S R, WOLF D , et al. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation. Nanostruct. Mater., 1997,9(1):651-660. |
[3] | WANG Y, DING Y . Structural, electronic, and magnetic properties of the semifluorinated boron nitride bilayer: a first-principles study. J. Phys. Chem.C, 2013,117(6):3114-3121. |
[4] | LI X, CAI W, AN J , et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009,324(5932):1312-1314. |
[5] | WANG X B, WENG Q, WANG X , et al. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano, 2014,8(9):9081-9088. |
[6] | FAN Y, HE K, TAN H , et al. Crack-free growth and transfer of continuous monolayer graphene grown on melted copper. Chem. Mater., 2014,26(17):4984-4991. |
[7] | WANG X, AMIR P, ZHANG J , et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett., 2012,7(1):1-7. |
[8] | GONG Y, SHI G, ZHANG Z , et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun., 2014, 5(1): 3193-1-8. |
[9] | ZHI C, BANDO Y, TANG C , et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater., 2009,21(28):2889-2893. |
[10] | AHMAD P, KHANDAKER M U, AMIN Y M , et al. Synthesis of highly crystalline multilayered boron niride microflakes. Sci. Rep., 2016, 6: 21403-1-6. |
[11] | BOINOVICH L B, EMELYANENKO A M, PASHININ A S , et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings. Langmuir, 2012,28(2):1206-1216. |
[12] | LEE C, DRELICH J, YAP Y . Superhydrophobicity of boron nitride nanotubes grown on silicon substrates. Langmuir, 2009,25(9):4853-4860. |
[13] | NIGUES A, SIRIA A, VINCENT P , et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater., 2014,13(7):688-692. |
[14] | YAMAGUCHI M, MENG F, FIRESTEIN K , et al. Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Mater. Sci. Eng., 2014,604(15):9-17. |
[15] | HAO B, ASTHANA A, HAZAVEH P K , et al. New flexible channels for room temperature tunneling field effect transistors. Sci. Rep., 2016, 6(1): 20293-1-7. |
[16] | LEE C H, QIN S, SAVAIKAR M A , et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots. Adv. Mater., 2013,25(33):4544-4548. |
[17] | PARASHAR V, DURAND C P, HAO B , et al. Switching behaviors of graphene-boron nitride nanotube heterojunctions. Sci. Rep., 2015, 5(1): 12238-1-6. |
[18] | SHUAI C, GAO C, FENG P , et al. Boron nitride nanotubes reinforce tricalcium phosphate scaffolds and promote the osteogenic differentiation of mesenchymal stem cells.[J]. Biomed. Nanotechnol., 2016,12(5):934-947. |
[19] | NOVOSELOV K S, JIANG D, SCHEDIN F , et al. Two-dimensional atomic crystals. P. Natl. Acad. Sci.USA, 2005,102(30):10451-10453. |
[20] | CHEN X, DOBSON J F, RASTON C L . Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun., 2012,48(31):3703-3705. |
[21] | SMITH R J, KING P J, LOTYA M , et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater., 2011,23(34):3944-3948. |
[22] | RAND M J, ROBERTS J F . Silicon oxynitride films from the NO-NH3-SiH4 reaction.[J]. Electrochem. Soc., 1973,120(3):446-453. |
[23] | SONG L, CI L, LU H , et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010,10(8):3209-3215. |
[24] | JIN C, LIN F, SUENAGA K , et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett., 2009, 102(19): 195505-1-4. |
[25] | MAROM N, BERNSTEIN J, GAREL J , et al. Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett., 2010, 105(5): 046801-1-4. |
[26] | GORBACHEV R V, RIAZ I, NAIR R R , et al. Hunting for monolayer boron nitride: optical and raman signatures. Small, 2011,7(4):465-468. |
[27] | GENG R, XU Y, Songfeng E , et al. Bio-inspired synthesis of highly crystallized hexagonal boron nitride nanosheets. Ceram. Int., 2018,44(12):14228-14235. |
[28] | ZENG X, YAO Y, GONG Z , et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small, 2016,11(46):6205-6213. |
[29] | ISMACH A, CHOU H, MENDE P , et al. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater., 2017, 4(2): 025117-1-10. |
[30] | ZHU Y, BANDO Y, YIN L , et al. Field nanoemitters:ultrathin BN nanosheets protruding from Si3N4 nanowires. Nano Lett., 2006,21(6):2982-2986. |
[31] | CHEN Z, ZOU J . Field emitters: ultrathin BN nanosheets protruded from BN fibers.[J]. Mater. Chem., 2011,21(4):1191-1195. |
[32] | JING L, LI H, TAY R , et al. Biocompatible hydroxylated boron nitride nanosheets/polyvinyl alcohol interpenetrating hydrogels with enhanced mechanical and thermal responses. ACS Nano, 2017,11(4):3742-3751. |
[33] | ZENG X, YE L, YU S , et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale, 2015,7(15):6774-6781. |
[34] | ZHANG D L, ZHA J W, LI W K , et al. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning. Compos. Sci. Technol., 2018,156:1-7. |
[35] | SHEN H, GUO J, WANG H , et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Inter., 2015,7(10):5701-5704. |
[36] | SONG W L, WANG P, CAO L , et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew. Chem. Int. Ed., 2012,124(26):6604-6607. |
[37] | XIE B H, HUANG X, ZHANG G J . High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol., 2013,85(9):98-103. |
[1] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[2] | CHU Yuxing, LIU Hairui, YAN Shuang. Preparation and Gas Sensing Properties of SnO2/NiO Composite Semiconductor Nanofibers [J]. Journal of Inorganic Materials, 2021, 36(9): 950-958. |
[3] | ZHU Yutong, TAN Peijie, LIN Hai, ZHU Xiangdong, ZHANG Xingdong. Injectable Hyaluronan/Hydroxyapatite Composite: Preparation, Physicochemical Property and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(9): 981-990. |
[4] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[5] | GUO Yinben, CHEN Zixi, WANG Hongzhi, ZHANG Qinghong. Progress of Inorganic Filler Based Composite Films for Triboelectric Nanogenerators [J]. Journal of Inorganic Materials, 2021, 36(9): 919-928. |
[6] | PENG Fei, JIANG Yonggang, FENG Jian, CAI Huafei, FENG Junzong, LI Liangjun. Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation [J]. Journal of Inorganic Materials, 2021, 36(7): 673-684. |
[7] | CAI Miao, CHEN Zihang, ZENG Shi, DU Jianghui, XIONG Juan. CuS Nanosheet Decorated Bi5O7I Composite for the Enhanced Photocatalytic Reduction Activity of Aqueous Cr(VI) [J]. Journal of Inorganic Materials, 2021, 36(6): 665-672. |
[8] | ZHENG Qifan, LI Chaoqun, BAN Xiaokuan, ZHAN Zhongliang, CHEN Chusheng. Preparation and Property of GDC-LSF Dual-phase Composite Membrane with Straight Pores and Sandwich Structure [J]. Journal of Inorganic Materials, 2021, 36(5): 497-501. |
[9] | WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum Oxide Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2021, 36(5): 461-470. |
[10] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[11] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[12] | LIU Yang, LU Youjun, LI Yanrui, LIN Liqun, YUAN Zhenxia, HUANG Zhenkun. HfN Formation and Phase Relationships in the Hf-Si-La-O-N System [J]. Journal of Inorganic Materials, 2021, 36(4): 443-448. |
[13] | LÜ Shasha, ZU Yufei, CHEN Guoqing, ZHAO Bojun, FU Xuesong, ZHOU Wenlong. Preparation and Mechanical Property of the Ceramic-reinforced Cr0.5MoNbWTi Refractory High-entropy Alloy Matrix Composites [J]. Journal of Inorganic Materials, 2021, 36(4): 386-392. |
[14] | SANG Weiwei, ZHANG Hongsong, CHEN Huahui, WEN Bin, LI Xinchun. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic [J]. Journal of Inorganic Materials, 2021, 36(4): 405-410. |
[15] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, WU Chunzhi, WANG Yingde. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation [J]. Journal of Inorganic Materials, 2021, 36(3): 245-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||