Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (9): 1022-1028.DOI: 10.15541/jim20180143
• Orginal Article • Previous Articles Next Articles
LIU Huan-Long1, 2, ZHAO Wei2, LI Rui-Zhe2, HUANG Xie-Yi2, TANG Yu-Feng2, LI Dong-Mei1, HUANG Fu-Qiang2, 3
Received:
2018-04-03
Revised:
2018-05-01
Online:
2018-09-20
Published:
2018-08-14
About author:
LIU Huan-Long (1990-), male, candidate of Master degree. E-mail: huanlongliu@outlook.com
Supported by:
CLC Number:
LIU Huan-Long, ZHAO Wei, LI Rui-Zhe, HUANG Xie-Yi, TANG Yu-Feng, LI Dong-Mei, HUANG Fu-Qiang. Facile Synthesis of Reduced Graphene Oxide In-situ Wrapped MnTiO3 Nanoparticles for Excellent Lithium Storage[J]. Journal of Inorganic Materials, 2018, 33(9): 1022-1028.
Fig. 1 (a) SEM image with inset showing the optical photograph of MnTiO3@rGO powder, (b) TEM image, (c) HRTEM image, and (d) SAED pattern, (e) high-angle annular dark field (HAADF) of MnTiO3@rGO, and EDS mapping of C, Mn, Ti, and O elements which indicates uniformly elemental distribution in the MnTiO3@rGO
Materials | C/wt% | O/wt% | Ti/wt% | Mn/wt% |
---|---|---|---|---|
MnTiO3@rGO | 9.01 | 18.87 | 32.11 | 40.01 |
Table 1 EDS data of MnTiO3@rGO
Materials | C/wt% | O/wt% | Ti/wt% | Mn/wt% |
---|---|---|---|---|
MnTiO3@rGO | 9.01 | 18.87 | 32.11 | 40.01 |
Fig. 2 (a) XRD patterns, (b) Raman spectra in the range of 100-2000 cm-1, (c) nitrogen sorption isotherms and corresponding pore size distribution curves (inset), and (d) electrical conductivity of as-obtained materials
Fig. 3 Electrochemical measurements of samples(a) CV curves of MnTiO3@rGO electrode; (b) Comparison of the specific capacity at different rates; (c) Cycling performance at 0.5 A·g-1 between MnTiO3@rGO, rGO and MnTiO3 electrodes; (d) Nyquist plots of electrodes of MnTiO3@rGO and MnTiO3 after 3 cyclingAll of the measurements were conducted using a voltage window of 0.01 V-3.0 V
[1] | KANG D, LIU Q, SI R,et al. Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon, 2016, 99: 138-147. |
[2] | JIANG Y, ZHANG D, LI Y,et al. Amorphous Fe2O3 as a high- capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4: 23-30. |
[3] | PETNIKOTA S, MARKA S K, BANERJEE A,et al. Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron (II) oxide’ composite for anode application in lithium ion batteries. Journal of Power Sources, 2015, 293: 253-263. |
[4] | DO J S, WENG C H.Preparation and characterization of CoO used as anodic material of lithium battery.Journal of Power Sources, 2005, 146(1): 482-486. |
[5] | VARGHESE B, REDDY M V, YANWU Z,et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 2008, 20(10): 3360-3367. |
[6] | LI B, HAO W, WEN X G.Semi-hollow/solid ZnMn2O4 microspheres: synthesis and performance in Li ion battery.Journal of Inorganic Materials, 2018, 33(3): 307-312. |
[7] | CAI J X, LI Z P, LI W,et al. Synthesis and electrochemical performance of Fe2O3 nanofibers as anode materials for LIBs. Journal of Inorganic Materials, 2018, 33(3): 301-306. |
[8] | LIU S Y, XU L, CHEN X,et al. Cluster structural CoFe2O4 particles loaded onto graphene and its Li-storage performance. Journal of Inorganic Materials, 2017, 32(9): 904-908. |
[9] | GUO Y G, HU J S, WAN L J.Nanostructured materials for electrochemical energy conversion and storage devices.Advanced Materials, 2008, 20(15): 2878-2887. |
[10] | KIM A, PARK E, LEE H,et al. Highly reversible insertion of lithium into MoO2 as an anode material for lithium ion battery. Journal of Alloys and Compounds, 2016, 681: 301-306. |
[11] | YAO Y, MCDOWELL M T, RYU I,et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949-2954. |
[12] | CUI L F, RUFFO R, CH C K,et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Letters, 2009, 9(1): 491-495. |
[13] | GUAN C, SUMBOJA A, WU H, et al. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Advanced Materials, 2017, 29(44): 1704117-1-9. |
[14] | HASSOUN J, DERRIEN G, PANERO S,et al. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Advanced Materials, 2008, 20(16): 3169-3175. |
[15] | LIAO L X, WANG M, FANG T,et al. Synthesis and characterization of ZnFe2O4 anode for lithium ion battery. Journal of Inorganic Materials, 2016, 31(1): 34-38. |
[16] | WANG Y P, LIU J J, LIU C X,et al. Morphology-controlled synthesis of hollow core-shell structural alpha-MoO3-SnO2 with superior lithium storage. Journal of Inorganic Materials, 2015, 30(9): 919-924. |
[17] | WANG Y G, CHENG L, XIA Y Y.Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution.Journal of Power Sources, 2006, 153(1): 191-196. |
[18] | HAO Y, QIAN M, XU J,et al. Porous cotton-derived carbon: synthesis, microstructure and supercapacitive performance. Journal of Inorganic Materials, 2018, 33(1): 93-99. |
[19] | WANG B, XIN H, LI X,et al. Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Scientific Reports, 2014, 4: 3729. |
[20] | XU J, DONG W, SONG C,et al. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. Journal of Materials Chemistry A, 2016, 4(40): 15698-15704. |
[21] | TAN X, CUI C, WU S,et al. Nitrogen-doped mesoporous carbon- encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chemistry, an Asian Journal, 2017, 12(1): 36-40. |
[22] | HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical Communications, 2005(12): 1566-1568. |
[23] | LI J, ZHANG L, ZHANG L,et al. In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. Journal of Power Sources, 2014, 249: 311-319. |
[24] | LI W, ZHANG Y J, WANG X P,et al. Synthesis and electrochemical performance of LiMn0.6Fe0.4PO4/C cathode for lithium- ion batteries. Journal of Inorganic Materials, 2017, 32(5): 476-482. |
[25] | YANG T, LI X, TIAN X D,et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries. Journal of Inorganic Materials, 2017, 32(7): 699-704. |
[26] | LIANG P, XING S, SHU H B,et al. Analogous three-dimensional MoS2/graphene composites for reversible Li storage. Journal of Inorganic Materials, 2016, 31(6): 575-580. |
[27] | XU J, DING W, ZHAO W,et al. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3(M = Ni, Co, Fe) nanorods for stable lithium storage. ACS Energy Letters, 2017, 2(3): 659-663. |
[28] | GEIM A, KNOVOSELOV K S.The rise of graphene.Nature Materials, 2007, 6: 183-191. |
[29] | EDA G, FANCHINI G, CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nature Nanotechnology, 2008, 3: 270-274. |
[30] | ZHU X, ZHU Y, MURALI S,et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 2011, 5(4): 3333-3338. |
[31] | YUAN T, JIANG Y, SUN W,et al. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh- rate lithium storage. Advanced Functional Materials, 2016, 26(13): 2198-2206. |
[32] | BAI X, LI T, ZHAO X Y,et al. Al2O3-modified Ti-Mn-O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Advances, 2016, 6(47): 40953-40961. |
[33] | GUO S, LIU J, QIU S,et al. Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances. Journal of Materials Chemistry A, 2015, 3(47): 23895-23904. |
[34] | YANG L, ZHANG X, LI Y,et al. Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium- ion batteries. Electrochimica Acta, 2015, 155: 272-278. |
[35] | LIU Z, TANG Y F, LIN T Q,et al. Preparation and characterization of graphene-MoS2 composite anode materials. Journal of Inorganic Materials, 2016, 31(4): 345-350. |
[1] | WANG Xu, GU Ming, LIAO Jincheng, SONG Qingfeng, SHI Xun, BAI Shengqiang, CHEN Lidong. High Temperature Interfacial Stability of Fe/Bi0.5Sb1.5Te3 Thermoelectric Elements [J]. Journal of Inorganic Materials, 2021, 36(2): 197-202. |
[2] | LIU Ziyu, TOCI Guido, PIRRI Angela, PATRIZI Barbara, FENG Yagang, CHEN Xiaopu, HU Dianjun, TIAN Feng, WU Lexiang, VANNINI Matteo, LI Jiang. Fabrication and Optical Property of Nd:Lu2O3 Transparent Ceramics for Solid-state Laser Applications [J]. Journal of Inorganic Materials, 2021, 36(2): 210-216. |
[3] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[4] | FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 140-151. |
[5] | ZHOU Kailing, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film [J]. Journal of Inorganic Materials, 2021, 36(2): 152-160. |
[6] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
[7] | ZHAO Qi, QIAO Ke, YAO Yongji, CHEN Zhang, CHEN Dongchu, GAO Yanfeng. High-conductivity Hydrophobic Fumed-SiO2 Composite Gel Electrolyte for High Performance Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 161-167. |
[8] | DIAO Xungang. Rejuvenation and Rapid Growth on Electrochromism Researches [J]. Journal of Inorganic Materials, 2021, 36(2): 113-114. |
[9] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co,Al Co-modification of Ni-rich LiNi0.8Mn0.2O2Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 0, (): 522-. |
[10] | MA Lingling, CHANGJiang. Nd-doped Calcium Silicate: Photothermal Effect,Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane [J]. Journal of Inorganic Materials, 0, (): 721-. |
[11] | WAN Peng, LI Mian, HUANG Qing. Molten Salt Assisted Synthesis of Dy3Si2C2 Coated SiC Powders and Sintering Behavior of SiC Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 49-54. |
[12] | XIE Xue, WU Jianrong, CAI Xiaojun, HAO Junnian, ZHENG Yuanyi. Photothermal/pH Responsive B-CuS-DOX Nanodrug for Chemo-photothermal Synergistic Therapy of Tumor [J]. Journal of Inorganic Materials, 2021, 36(1): 81-87. |
[13] | SHEN Lu, WANG Dewen, HUANG Rong, DU Shiyu, HUANG Qing. Electron Irradiation Induced Phase-separation Behavior in AlF3 Doped Alumina Ceramic with Superior Sensitivity [J]. Journal of Inorganic Materials, 2021, 36(1): 95-100. |
[14] | BAI Jiawei, YANG Jing, LÜ Zhenfei, TANG Xiaodong. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43-48. |
[15] | DENG Jifeng, CHEN Shunpeng, WU Xiaojuan, ZHENG Jie, LI Xingguo. Recent Progress on Materials for Hydrogen Generation via Hydrolysis [J]. Journal of Inorganic Materials, 2021, 36(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||