Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (9): 981-988.DOI: 10.15541/jim20250038
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Fuping1,2(), CHU Jiabao1,2, QIU Haibo1,2, DANG Wei1,2(
), LI Chenxi1,2, ZHAO Kang1,2, TANG Yufei1,2
Received:
2025-01-25
Revised:
2025-03-18
Published:
2025-09-20
Online:
2025-03-25
Contact:
DANG Wei, lecturer. E-mail:wdang@xaut.edu.cn
About author:
LI Fuping (1985-), male, associate professor. E-mail: lifp@xaut.edu.cn
Supported by:
CLC Number:
LI Fuping, CHU Jiabao, QIU Haibo, DANG Wei, LI Chenxi, ZHAO Kang, TANG Yufei. Compressive Resilience Mechanism of SiO2 Nanofibre Aerogels[J]. Journal of Inorganic Materials, 2025, 40(9): 981-988.
Fig. 1 (a) TG curve of precursor membrane; (b, c) XRD patterns (b) and FT-IR spectra (c) of SiO2 nanofiber membrane; (d-f) SEM image (d), TEM image (e), HRTEM image and corresponding SEAD pattern (f) of SiO2 nanofiber membrane sintered at 700 ℃
Fig. 2 (a, b) Flexibility of SiO2 nanofiber membrane; (c, d) Schematic diagrams for buckling deformation of SiO2 nanofiber with different structures Colorful figures are available on website
Fig. 3 (a) Fabrication process of SiO2 nanofiber aerogels; (b-e) Digital photo (b) and microstructures (c-e) of SiO2 nanofiber aerogels fabricated with 1.5% solid content and sintered at 700 ℃
Fig. 5 Compressive mechanical properties of SiO2 nanofiber aerogels (a-c) Stress-strain curves of SiO2 nanofiber aerogels fabricated with solid contents of (a) 0.5%, (b) 1.5% and (c) 2.5%; (d) Effect of solid content on the compressive strength and energy loss coefficients (ΔU/U); (e) Resilience of SiO2 nanofiber aerogels under liquid nitrogen, room temperature and butane blowtorch flame. Colorful figures are available on website
Fig. 6 Compressive resilience mechanism of SiO2 fiber aerogels (a) Pore wall of SiO2 nanofiber aerogels; (b) Minimum curve radius of single SiO2 nanofiber during buckling; (c) Buckling deformation of nanofiber; (d) Effective nanofiber length of SiO2 nanofiber aerogels fabricated with different solid contents; (e) Comparison of experimental and calculated values of resilience for SiO2 nanofiber aerogels
[1] | ZHAN W, CHEN L, KONG Q H, et al. The synthesis and polymer reinforced mechanical properties of SiO2 aerogels: a review. Molecules, 2023, 28(14): 5534. |
[2] |
LUO Y, XIA S H, NIU B, et al. Preparation and high temperature inorganic transformation of flexible silicone aerogels. Journal of Inorganic Materials, 2022, 37(12): 1281.
DOI |
[3] |
潘月磊, 程旭东, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展. 化工进展, 2023, 42(1): 297.
DOI |
[4] | YI Z H, ZHANG X, YAN L W, et al. Super-insulated, flexible, and high resilient mullite fiber reinforced silica aerogel composites by interfacial modification with nanoscale mullite whisker. Composites Part B, 2022, 230: 109549. |
[5] | 石小靖, 张瑞芳, 何松, 等. 玻璃纤维增韧SiO2气凝胶复合材料的制备及隔热性能. 硅酸盐学报, 2016, 44(1): 129. |
[6] |
ZHANG X S, WANG B, WU N, et al. Micro-nano ceramic fibers for high temperature thermal insulation. Journal of Inorganic Materials, 2021, 36(3): 245.
DOI |
[7] | SU L, NIU M, LI M, et al. Engineering the mechanical properties of resilient ceramic aerogels. Journal of the American Ceramic Society, 2023, 107(3): 1468. |
[8] | LIU C, WANG S, WANG N, et al. From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Letters, 2022, 14: 194 |
[9] | 沈晓冬, 吴晓栋, 孔勇, 等. 气凝胶纳米材料的研究进展. 中国材料进展, 2018, 37(9): 671. |
[10] |
SI Y, WANG X Q, DOU L Y, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 2018, 4(4): 8925.
DOI PMID |
[11] | FENG Y, GUO Y S, LI X Y, et al. Continuous rapid fabrication of ceramic fiber sponge aerogels with high thermomechanical properties via a green and low-cost electrospinning technique. ACS Nano, 2024, 18: 19054. |
[12] | WANG J H, LIU L P, DONG W L, et al. Ultra-high radial elastic aerogel fibers for thermal insulation textile. Journal of Advanced Materials Science, 2024: 2417873. |
[13] | SU L, WANG H J, JIA S H, et al. Highly stretchable, crack- insensitive and compressible ceramic aerogel. ACS Nano, 2021, 15(11): 18354. |
[14] | ZHANG X, LIU C, ZHANG X X, et al. Super strong, shear resistant, and highly elasticlamellar structured ceramic nanofibrous aerogels for thermal insulation. Journal of Materials Chemistry A, 2021, 9: 27415. |
[15] |
XU B, LIANG H T, HU J, et al. Preparation of anisotropic polyimide aerogels for thermal protection with outstanding flexible resilience using the freeze-drying method. RSC Advances, 2024, 14(12): 8556.
DOI PMID |
[16] | LI B, TIAN H Y, LI L, et al. Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Advanced Functional Materials, 2024, 34(22): 2314653. |
[17] | JIANG J P, YAN L W, SONG M J, et al. Thermally insulated C/SiC/SiBCN composite ceramic aerogel with enhanced electromagnetic wave absorption performance. Ceramics International, 2025, 51(1): 17. |
[18] | PATIL S P, PARAG S, BERND M. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: Insights from all-atom simulations. Scripta Materialia, 2019, 177: 65. |
[19] | 瑚佩, 姜勇刚, 张忠明, 等. 耐高温、高强度隔热复合材料研究进展. 材料导报, 2020, 34(7): 7082. |
[20] | SHAHRIAR S M S, MCCARTHY D A, ANDRABI M S, et al. Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration. Nature Communications, 2024, 15: 1080. |
[21] |
PENG F, JIANG Y G, FENG J, et al. Research progress on alumina aerogel composites for high-temperature thermal insulation. Journal of Inorganic Materials, 2021, 36(7): 673.
DOI |
[22] | XU W H, ZHU Y X, RAVICHANDRAN D, et al. Review of fiber-based three-dimensional printing for applications ranging from nanoscale nanoparticle alignment to macroscale patterning. ACS Applied Nano Materials, 2021, 4(8): 7538. |
[23] | 吴晓栋, 宋梓豪, 王伟, 等. 气凝胶材料的研究进展. 南京工业大学学报(自然科学版), 2020, 42(4): 405. |
[24] | WANG J, LIU X N, SHANG S S, et al. Novel biphasic high-entropy ceramic aerogels and their fiber composites with low thermal conductivity, high thermal stability and significant thermal insulation property. Journal of Alloys and Compounds, 2024, 1007: 176299. |
[25] | XU B K, HE Q C, W Y Q, et al. Ultralight and efficient microwave absorption of SiC/SiO2 ceramic aerogels derived from biomass. Ceramics International, 2023, 49(18): 30125. |
[26] | 吕双祺, 孙燕涛, 腾雪峰, 等. 陶瓷纤维增强SiO2气凝胶复合材料面内拉伸非均匀全场应变测量与分析. 复合材料学报, 2021, 38(7): 2336. |
[27] | ZHANG K K, LIU L, WANG X, et al. Lightweight and superamphiphobic silanized cellulose-silica aerogels on green flexible thermal substrates. Chemical Engineering Journal, 2024, 502: 158238. |
[28] | CHANG J M, ZHU Y W, LIU J, et al. Fabrication of elastic SiO2 aerogels with prominent mechanical strength and stability reinforced by SiO2 nanofibers and polyurethane for oil adsorption. Separation and Purification Technology, 2024, 341: 126914. |
[29] | ZIMMERMANN G V M, ZATTERA J A. Silica aerogel reinforced with cellulose nanofibers. Journal of Porous Materials, 2021, 28(5): 1325. |
[1] | YUAN Liping, WU Yuanbo, YU Jiajing, ZHANG Shiyan, SUN Yi, HU Yunchu, FAN Youhua. CNFs Aerogel Composite with Phosphomolybdic Acid Intercalated Hydrotalcite: Preparation and Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 415-424. |
[2] | MAO Aiqin, LU Wenyu, JIA Yanggang, WANG Ranran, SUN Jing. Flexible Piezoelectric Devices and Their Wearable Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 717-730. |
[3] | ZHANG Xiangsong, LIU Yetong, WANG Yongying, WU Zirui, LIU Zhenzhong, LI Yi, YANG Juan. Self-assembled Platinum-iridium Alloy Aerogels and Their Efficient Electrocatalytic Ammonia Oxidation Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 511-520. |
[4] | LUO Yi, XIA Shuhai, NIU Bo, ZHANG Yayun, LONG Donghui. Preparation and High Temperature Inorganic Transformation of Flexible Silicone Aerogels [J]. Journal of Inorganic Materials, 2022, 37(12): 1281-1288. |
[5] | PENG Fei, JIANG Yonggang, FENG Jian, CAI Huafei, FENG Junzong, LI Liangjun. Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation [J]. Journal of Inorganic Materials, 2021, 36(7): 673-684. |
[6] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, WU Chunzhi, WANG Yingde. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation [J]. Journal of Inorganic Materials, 2021, 36(3): 245-256. |
[7] | ZHANG Ze,WANG Xiaodong,SHEN Jun. Effect of Organic-inorganic Crosslinking Degree on the Mechanical and Thermal Properties of Aerogels [J]. Journal of Inorganic Materials, 2020, 35(4): 454-460. |
[8] | LUO Yi,FENG Junzong,FENG Jian,JIANG Yonggang,LI Liangjun. Research Progress on Advanced Carbon Materials as Pt Support for Proton Exchange Membrane Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(4): 407-415. |
[9] | LIU Fengqi, FENG Jian, JIANG Yonggang, LI Liangjun. Preparation and Application of Boron Nitride Aerogels [J]. Journal of Inorganic Materials, 2020, 35(11): 1193-1202. |
[10] | DING Zhuofeng, YANG Yongqiang, LI Zaijun. Synthesis and Supercapacitor Performance of Histidine-functionalized Carbon Dots/Graphene Aerogel [J]. Journal of Inorganic Materials, 2020, 35(10): 1130-1136. |
[11] | LYU Ziye, TANG Yiping, CAO Huazhen, ZHENG Guoqu, HOU Guangya. Effect of V Doping on Electrocatalytic Performance of Ni-Co-S on Bacterial Cellulose-derived Carbon Aerogel [J]. Journal of Inorganic Materials, 2020, 35(10): 1142-1148. |
[12] | ZHU Zhao-Xian,WANG Fei,YAO Hong-Jun,DONG Jin-Xin,LONG Dong-Hui. High-temperature Insulation Property of Opacifier-doped Al2O3-SiO2 Aerogel/Mullite Fiber Composites [J]. Journal of Inorganic Materials, 2018, 33(9): 969-975. |
[13] | WANG Yong, YU Yun, FENG Ai-Hu, JIANG Feng, HU Xue-Bing, SONG Li-Xin. Nafion Modified Graphene Aerogel with Hierarchical Porous Structures [J]. Journal of Inorganic Materials, 2018, 33(4): 469-474. |
[14] | YANG Jing-Feng, WANG Qi-Hua, WANG Ting-Mei. Synthesis and Property of Alumina Aerogel [J]. Journal of Inorganic Materials, 2018, 33(3): 259-265. |
[15] | HE Fei, LI Ya, LUO Jin, FANG Min-Han, HE Xiao-Dong. Development of SiO2/C and SiC/C Composites Featuring Aerogel Structures [J]. Journal of Inorganic Materials, 2017, 32(5): 449-458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||