Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (9): 989-996.DOI: 10.15541/jim20250011
• RESEARCH ARTICLE • Previous Articles Next Articles
Received:
2025-01-08
Revised:
2025-03-05
Published:
2025-09-20
Online:
2025-04-02
About author:
LI Ronghui (1983-), male, lecturer. E-mail: lrh031776@163.com
Supported by:
CLC Number:
LI Ronghui, QIAN Jun. Nanocrystalline CeO2-ZrO2 Solid Solution: One-step Alcohothermal Synthesis and Arsenic Removal Performance[J]. Journal of Inorganic Materials, 2025, 40(9): 989-996.
Sample | Interplanar spacing/Å | D/nm | SBET/ (m2·g-1) | |||
---|---|---|---|---|---|---|
d(111) | d(200) | d(220) | d(311) | |||
CeO2 | 3.19 | 2.71 | 1.91 | 1.61 | 7.7 | 184.1 |
Ce0.8Zr0.2O2 | 3.14 | 2.65 | 1.85 | 1.53 | 4.3 | 270.6 |
Ce0.6Zr0.4O2 | 3.09 | 2.60 | 1.81 | 1.50 | 5.1 | 256.2 |
Ce0.4Zr0.6O2 | 3.05 | 2.54 | 1.75 | 1.46 | 5.9 | 250.8 |
Ce0.2Zr0.8O2 | 3.01 | 2.48 | 1.71 | 1.40 | 6.2 | 235.1 |
ZrO2 | 2.96 | 2.45 | 1.65 | 1.36 | 8.9 | 198.5 |
Table 1 Lattice parameters and specific surface areas of CeO2, ZrO2 and CeO2-ZrO2 solid solutions
Sample | Interplanar spacing/Å | D/nm | SBET/ (m2·g-1) | |||
---|---|---|---|---|---|---|
d(111) | d(200) | d(220) | d(311) | |||
CeO2 | 3.19 | 2.71 | 1.91 | 1.61 | 7.7 | 184.1 |
Ce0.8Zr0.2O2 | 3.14 | 2.65 | 1.85 | 1.53 | 4.3 | 270.6 |
Ce0.6Zr0.4O2 | 3.09 | 2.60 | 1.81 | 1.50 | 5.1 | 256.2 |
Ce0.4Zr0.6O2 | 3.05 | 2.54 | 1.75 | 1.46 | 5.9 | 250.8 |
Ce0.2Zr0.8O2 | 3.01 | 2.48 | 1.71 | 1.40 | 6.2 | 235.1 |
ZrO2 | 2.96 | 2.45 | 1.65 | 1.36 | 8.9 | 198.5 |
Sample | h/ (mg·g-1·min-1) | k2/ (g·mg-1·min-1) | qe/ (mg·g-1) | R2 |
---|---|---|---|---|
CeO2 | 0.3255 | 0.0911 | 1.8641 | 0.9947 |
Ce0.8Zr0.2O2 | 0.2974 | 0.0816 | 2.0140 | 0.9951 |
Ce0.6Zr0.4O2 | 0.2135 | 0.0803 | 1.7547 | 0.9905 |
Ce0.4Zr0.6O2 | 0.1842 | 0.0795 | 1.5045 | 0.9982 |
Ce0.2Zr0.8O2 | 0.1557 | 0.0714 | 1.4511 | 0.9911 |
ZrO2 | 0.1095 | 0.0598 | 1.2987 | 0.9961 |
Table 2 Fitting parameters of pseudo second order kinetics model
Sample | h/ (mg·g-1·min-1) | k2/ (g·mg-1·min-1) | qe/ (mg·g-1) | R2 |
---|---|---|---|---|
CeO2 | 0.3255 | 0.0911 | 1.8641 | 0.9947 |
Ce0.8Zr0.2O2 | 0.2974 | 0.0816 | 2.0140 | 0.9951 |
Ce0.6Zr0.4O2 | 0.2135 | 0.0803 | 1.7547 | 0.9905 |
Ce0.4Zr0.6O2 | 0.1842 | 0.0795 | 1.5045 | 0.9982 |
Ce0.2Zr0.8O2 | 0.1557 | 0.0714 | 1.4511 | 0.9911 |
ZrO2 | 0.1095 | 0.0598 | 1.2987 | 0.9961 |
Sample | qe/(mg·g-1) | KF | N | R2 |
---|---|---|---|---|
Ce0.8Zr0.2O2 | 163 | 30.34 | 2.685 | 0.9840 |
CeO2 | 120 | 23.41 | 2.758 | 0.9908 |
ZrO2 | 69 | 12.07 | 2.613 | 0.9840 |
CZ450 | 54 | 10.53 | 2.613 | 0.9908 |
Table 3 Fitting parameters of Freundlich adsorption model
Sample | qe/(mg·g-1) | KF | N | R2 |
---|---|---|---|---|
Ce0.8Zr0.2O2 | 163 | 30.34 | 2.685 | 0.9840 |
CeO2 | 120 | 23.41 | 2.758 | 0.9908 |
ZrO2 | 69 | 12.07 | 2.613 | 0.9840 |
CZ450 | 54 | 10.53 | 2.613 | 0.9908 |
[1] | LI Z J, YANG Q C, YANG Y, et al. Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, northern China. Environmental Pollution, 2020, 256: 113455. |
[2] | ALIJANI H, SHARIATINIA Z. Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe2O3 as a precursor. Chemosphere, 2017, 171: 502. |
[3] | LATA S, SAMADDER S R. Removal of arsenic from water using nano adsorbents and challenges: a review. Journal of Environmental Management, 2016, 166: 387. |
[4] | WANG Z, SHEN X Q, JING M X, et al. Enhanced arsenic removal from drinking water by FeOOH/γ-Al2O3 granules. Journal of Alloys and Compounds, 2018, 735: 1620. |
[5] | LI R H, JIA Y Z, HU N N. 3D hierarchical flower like alumina nanomaterials: preparation and arsenic removal performance. Journal of Inorganic Materials, 2019, 34(5): 553. |
[6] | ZHOU Z, YU Y Q, DING Z X, et al. Competitive adsorption of arsenic and fluoride on {201} TiO2. Applied Surface Science, 2019, 466: 425. |
[7] | DENG M, WU X D, ZHU A M, et al. Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal. Journal of Environmental Management, 2019, 237: 63. |
[8] | SHEHZAD K, AHMAD M, HE J Y, et al. Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficient removal of As(III) from aqueous solutions. Journal of Colloid and Interface Science, 2019, 533: 588. |
[9] | LI R H, YANG W Y, GAO S, et al. Hydrous cerium oxides coated glass fiber for efficient and long-lasting arsenic removal from drinking water. Journal of Advanced Ceramics, 2021, 10(2): 247. |
[10] | LI R H, LI Q, GAO S A, et al. Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. adsorption capacity and mechanism. Chemical Engineering Journal, 2012, 185: 127. |
[11] | ZHANG Y, DOU X M, ZHAO B, et al. Removal of arsenic by a granular Fe-Ce oxide adsorbent: fabrication conditions and performance. Chemical Engineering Journal, 2010, 162(1): 164. |
[12] |
DENG S B, LI Z J, HUANG J, et al. Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water. Journal of Hazardous Materials, 2010, 179(1/2/3): 1014.
DOI PMID |
[13] | CHEN J, WANG J Y, ZHANG G S, et al. Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water. Chemical Engineering Journal, 2018, 334: 1518. |
[14] | SUN C Z, QIU J W, ZHANG Z B, et al. Removal of arsenite from water by Ce-Al-Fe trimetal oxide adsorbent: kinetics, isotherms, and thermodynamics. Journal of Chemistry, 2016, 2016: 8617219. |
[15] | CAMPOS P T A, OLIVEIRA C F, LIMA J P V, et al. Cerium- zirconium mixed oxide synthesized by Sol-Gel method and its effect on the oxygen vacancy and specific surface area. Journal of Solid State Chemistry, 2022, 307: 122752. |
[16] | TAKAHASHI H, TAKEGUCHI T, YAMAMOTO N, et al. Ni cermet solid oxide fuel cell anodes prepared from nanoparticle Y2O3-CeO2-ZrO2 solid solutions. Solid State Ionics, 2011, 185(1): 52. |
[17] | AHN K, HE H P, VOHS J M, et al. Enhanced thermal stability of SOFC anodes made with CeO2-ZrO2 solutions. Electrochemical and Solid-State Letters, 2005, 8(8): A414. |
[18] | ZABILSKIY M, MA K B, BECK A, et al. Methanol synthesis over Cu/CeO2-ZrO2 catalysts: the key role of multiple active components. Catalysis Science & Technology, 2021, 11(1): 349. |
[19] | MAIA T A, ASSAF E M. Catalytic features of Ni supported on CeO2-ZrO2 solid solution in the steam reforming of glycerol for syngas production. RSC Advances, 2014, 4(59): 31142. |
[20] | 周益, 赵月昌, 贾嘉, 等. 铈锆铝复合氧化物的制备及其性能研究. 中国稀土学报, 2014, 32(3): 304. |
[21] | YUAN W H, ZHOU C C, LI L. Study on catalytic properties of nano-CeO2-ZrO2 mixed oxides prepared by modified Sol-Gel method. Journal of Inorganic Materials, 2010, 25(8): 820. |
[22] | THAMMACHART M, MEEYOO V, RISKSOMBOON T, et al. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via Sol-Gel technique: CO oxidation. Catalysis Today, 2001, 68(1/2/3): 53. |
[23] | 张馥鼎, 马新胜, 高玮. 纳米稀土—锆固溶体的合成及高温稳定性研究. 稀土, 2007, 28(4): 19. |
[24] | ZHANG Y, YANG M, DOU X M, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environmental Science & Technology, 2005, 39(18): 7246. |
[25] | ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environmental Science & Technology, 2007, 41(13): 4613. |
[26] | PENA M, MENG X G, KORFIATIS G P, et al. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science & Technology, 2006, 40(4): 125. |
[1] | WEI Jianwen, ZHANG Lijuan, GENG Linlin, LI Yu, LIAO Lei, WANG Dunqiu. Novel CO2 Adsorbent Prepared with ZSM-5/MCM-48 as Support: High Adsorption Property and Its Mechanism [J]. Journal of Inorganic Materials, 2025, 40(7): 833-839. |
[2] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[3] | Rong-Hui LI, Yi-Zheng JIA, Nan-Nan HU. 3D Hierarchical Flower Like Alumina Nanomaterials: Preparation and Arsenic Removal Performance [J]. Journal of Inorganic Materials, 2019, 34(5): 553-559. |
[4] | ZHANG Jun,WANG De-Ping,YAO Ai-Hua,HUANG Wen-Hai. Research on Adsorption Capacity for Ni2+ and Mechanism of Nano-hydroxyapatite [J]. Journal of Inorganic Materials, 2009, 24(2): 269-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||