Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 536-544.DOI: 10.15541/jim20240494
• RESEARCH ARTICLE • Previous Articles Next Articles
XIONG Siyu1(), MO Chen1, ZHU Xiaowei1, ZHU Guobin1, CHEN Deqin1, LIU Laijun1, SHI Xiaodong2, LI Chunchun1(
)
Received:
2024-11-27
Revised:
2024-12-19
Published:
2025-05-20
Online:
2025-01-09
Contact:
LI Chunchun, associate professor. E-mail: lichunchun2003@126.comAbout author:
XIONG Siyu (2000-), female, Master candidate. E-mail: xiongsiyu0927@163.com
Supported by:
CLC Number:
XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity[J]. Journal of Inorganic Materials, 2025, 40(5): 536-544.
Fig. 2 XRD patterns of LiBxAl1-xSi2O6 ceramics (a) At the optimum sintering temperature; (b-d) Rietveld refinement fitting patterns at (b) x = 0, (c) x = 0.12, and (d) x = 0.20
x | Lattice parameter | χ2 | |||||
---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | ||||
0 | 0.75380(5) | 0.75380(5) | 0.91556(4) | 0.52024(4) | 7.69 | 10.8 | 1.84 |
0.05 | 0.75346(3) | 0.75346(3) | 0.91533(1) | 0.51963(9) | 7.32 | 10.1 | 1.83 |
0.08 | 0.75320(5) | 0.75320(5) | 0.91494(0) | 0.51906(2) | 7.24 | 10.2 | 1.89 |
0.12 | 0.75286(8) | 0.75286(8) | 0.91434(9) | 0.51826(2) | 7.24 | 10.2 | 1.87 |
0.16 | 0.75246(2) | 0.75246(2) | 0.91332(8) | 0.51712(5) | 7.29 | 10.1 | 1.86 |
0.20 | 0.75206(4) | 0.75206(4) | 0.91257(9) | 0.51615(5) | 7.22 | 9.98 | 1.87 |
Table 1 Rietveld refined structural parameters of LiBxAl1-xSi2O6 ceramics
x | Lattice parameter | χ2 | |||||
---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | ||||
0 | 0.75380(5) | 0.75380(5) | 0.91556(4) | 0.52024(4) | 7.69 | 10.8 | 1.84 |
0.05 | 0.75346(3) | 0.75346(3) | 0.91533(1) | 0.51963(9) | 7.32 | 10.1 | 1.83 |
0.08 | 0.75320(5) | 0.75320(5) | 0.91494(0) | 0.51906(2) | 7.24 | 10.2 | 1.89 |
0.12 | 0.75286(8) | 0.75286(8) | 0.91434(9) | 0.51826(2) | 7.24 | 10.2 | 1.87 |
0.16 | 0.75246(2) | 0.75246(2) | 0.91332(8) | 0.51712(5) | 7.29 | 10.1 | 1.86 |
0.20 | 0.75206(4) | 0.75206(4) | 0.91257(9) | 0.51615(5) | 7.22 | 9.98 | 1.87 |
Fig. 3 Relationship between bulk density and sintering temperature of LiBxAl1-xSi2O6 ceramics (a) LiAlSi2O6 ceramic; (b) LiBxAl1-xSi2O6 ceramic; (c) Bulk density and sintering temperature varied with x
Fig. 4 SEM images and grain size distributions of LiBxAl1-xSi2O6 ceramics (a) x = 0; (b) x = 0.05; (c) x = 0.08; (d) x = 0.12; (e) x = 0.16; (f) x = 0.20
Fig. 5 Raman spectra and corresponding parameters of LiBxAl1-xSi2O6 ceramics (a) Raman spectra at different compositions; (b) Raman shift and FWHM at 493 cm-1 changed with composition
x | Vm / nm3 | α / nm3 | εtheo | εr | α·Vm-1 |
---|---|---|---|---|---|
0 | 0.1300610 | 0.0157900 | 4.1042 | 3.95 | 0.121405 |
0.05 | 0.1299098 | 0.0157530 | 4.0968 | 3.90 | 0.121261 |
0.08 | 0.1297655 | 0.0157308 | 4.0949 | 3.85 | 0.121225 |
0.12 | 0.1295655 | 0.0157012 | 4.0928 | 3.81 | 0.121184 |
0.16 | 0.1292813 | 0.0156716 | 4.0947 | 3.76 | 0.121221 |
0.20 | 0.1290388 | 0.0156420 | 4.0946 | 3.69 | 0.121219 |
Table 2 Vm, α, εtheo, εr, and α/Vm of LiBxAl1-xSi2O6 ceramics
x | Vm / nm3 | α / nm3 | εtheo | εr | α·Vm-1 |
---|---|---|---|---|---|
0 | 0.1300610 | 0.0157900 | 4.1042 | 3.95 | 0.121405 |
0.05 | 0.1299098 | 0.0157530 | 4.0968 | 3.90 | 0.121261 |
0.08 | 0.1297655 | 0.0157308 | 4.0949 | 3.85 | 0.121225 |
0.12 | 0.1295655 | 0.0157012 | 4.0928 | 3.81 | 0.121184 |
0.16 | 0.1292813 | 0.0156716 | 4.0947 | 3.76 | 0.121221 |
0.20 | 0.1290388 | 0.0156420 | 4.0946 | 3.69 | 0.121219 |
x | VLi | VSi/Al | VO | CLi-O/% | CSi/Al-O/% | Average/% |
---|---|---|---|---|---|---|
0 | 0.820 | 3.906 | 1.912 | 18.87 | 53.18 | 36.03 |
0.05 | 0.821 | 3.935 | 1.924 | 18.89 | 53.44 | 36.16 |
0.08 | 0.823 | 3.947 | 1.930 | 18.92 | 53.54 | 36.23 |
0.12 | 0.824 | 3.978 | 1.943 | 18.94 | 53.81 | 36.37 |
0.16 | 0.825 | 4.036 | 1.968 | 18.95 | 54.31 | 36.63 |
0.20 | 0.829 | 4.075 | 1.986 | 19.02 | 54.65 | 36.83 |
Table 3 Bond valence, covalence and average covalence of LiBxAl1-xSi2O6 ceramics
x | VLi | VSi/Al | VO | CLi-O/% | CSi/Al-O/% | Average/% |
---|---|---|---|---|---|---|
0 | 0.820 | 3.906 | 1.912 | 18.87 | 53.18 | 36.03 |
0.05 | 0.821 | 3.935 | 1.924 | 18.89 | 53.44 | 36.16 |
0.08 | 0.823 | 3.947 | 1.930 | 18.92 | 53.54 | 36.23 |
0.12 | 0.824 | 3.978 | 1.943 | 18.94 | 53.81 | 36.37 |
0.16 | 0.825 | 4.036 | 1.968 | 18.95 | 54.31 | 36.63 |
0.20 | 0.829 | 4.075 | 1.986 | 19.02 | 54.65 | 36.83 |
Component | ST/℃ | εr | Q×f/GHz | τf/(×10-6, ℃-1) | Ref. |
---|---|---|---|---|---|
LiAlSiO4 | 1350 | 4.9 | 36000 | -57.3 | [ |
Li(Al0.99Li0.01)SiO3.99 | 1250 | 3.49 | 51358 | -51.48 | [ |
Ca2SiO4 | 1450 | 8.6 | 26100 | -89 | [ |
Sr2SiO4 | 1575 | 9.5 | 19100 | -205 | [ |
Ba2SiO4 | 1525 | 13.1 | 17900 | -17 | [ |
Zn2SiO4 | 1340 | 5.7 | 53000 | -16 | [ |
Ba2ZnSi2O7 | 1200 | 8.09 | 26600 | -51.4 | [ |
Sr2MgSi2O7 | 1280 | 6.85 | 22530 | -32 | [ |
Sr3MgSi2O8 | 1450 | 11.6 | 25375 | -57.41 | [ |
Li2SiO3 | 1025 | 6.19 | 30550 | -40.95 | [ |
Li2ZnSiO4 | 1250 | 5.8 | 14700 | -96.6 | [ |
Li2MgSiO4 | 1100 | 5.73 | 13570 | -16.7 | [ |
LiBxAl1-xSiO4(0.02≤x≤0.1) | 875-1100 | 3.34-3.73 | 25770-27540 | -22.85--16.5 | [ |
LiBxAl1-xSi2O6(0≤x≤0.20) | 1000-1400 | 3.69-3.95 | 24300-30500 | -45.9--20.9 | This work |
Table 4 Sintering temperatures (ST) and microwave dielectric properties of several silicates compared with LiBxAl1-xSi2O6[17,19,26,28,38,41 -45]
Component | ST/℃ | εr | Q×f/GHz | τf/(×10-6, ℃-1) | Ref. |
---|---|---|---|---|---|
LiAlSiO4 | 1350 | 4.9 | 36000 | -57.3 | [ |
Li(Al0.99Li0.01)SiO3.99 | 1250 | 3.49 | 51358 | -51.48 | [ |
Ca2SiO4 | 1450 | 8.6 | 26100 | -89 | [ |
Sr2SiO4 | 1575 | 9.5 | 19100 | -205 | [ |
Ba2SiO4 | 1525 | 13.1 | 17900 | -17 | [ |
Zn2SiO4 | 1340 | 5.7 | 53000 | -16 | [ |
Ba2ZnSi2O7 | 1200 | 8.09 | 26600 | -51.4 | [ |
Sr2MgSi2O7 | 1280 | 6.85 | 22530 | -32 | [ |
Sr3MgSi2O8 | 1450 | 11.6 | 25375 | -57.41 | [ |
Li2SiO3 | 1025 | 6.19 | 30550 | -40.95 | [ |
Li2ZnSiO4 | 1250 | 5.8 | 14700 | -96.6 | [ |
Li2MgSiO4 | 1100 | 5.73 | 13570 | -16.7 | [ |
LiBxAl1-xSiO4(0.02≤x≤0.1) | 875-1100 | 3.34-3.73 | 25770-27540 | -22.85--16.5 | [ |
LiBxAl1-xSi2O6(0≤x≤0.20) | 1000-1400 | 3.69-3.95 | 24300-30500 | -45.9--20.9 | This work |
[1] | ZHOU D, PANG L X, WANG D W, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. Journal of Materials Chemistry C, 2017, 5(38): 10094. |
[2] | XIONG Y, XIE H Y, RAO Z G, et al. Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. Journal of Advanced Ceramics, 2021, 10(6): 1360. |
[3] | LIN Q B, SONG K X, LIU B, et al. Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A = Sr, Ba) ceramics for 5G applications. Ceramics International, 2020, 46(1): 1171. |
[4] | CHEN D Q, YAN N, CAO X F, et al. Entropy regulation in LaNbO4-based fergusonite to implement high-temperature phase transition and promising dielectric properties. Journal of Advanced Ceramics, 2023, 12(5): 1067. |
[5] | ZHANG P, ZHAO Y G. Influence of Sm3+ substitutions for Nd3+ on the microwave dielectric properties of (Nd1-xSmx)NbO4 (x = 0.02-0.15) ceramics. Journal of Alloys and Compounds, 2016, 654: 240. |
[6] | JABEEN S, KHAN Q U. An integrated MIMO antenna design for Sub-6 GHz & millimeter-wave applications with high isolation. AEU-International Journal of Electronics and Communications, 2022, 153: 154247. |
[7] | LOU W C, MAO M M, SONG K X, et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. Journal of the European Ceramic Society, 2022, 42(6): 2820. |
[8] | XIONG S Y, CHEN D Q, ZHU X W, et al. Processing strategy and composite regulation on dielectric performance in Li2O-Al2O3-B2O3 dielectric systems using SrTiO3. Journal of the American Ceramic Society, 2024, 107(9): 6080. |
[9] | WU F F, ZHOU D, DU C, et al. Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1-xBix)NbO4 (x = 0-0.15) microwave dielectric ceramics. ACS Applied Materials & Interfaces, 2022, 14(5): 7030. |
[10] | LIU B, HU C C, HUANG Y H, et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity. Journal of Alloys and Compounds, 2019, 791: 1033. |
[11] | LIU B, LIU X Q, CHEN X M. Sr2LaAlTiO7: a new Ruddlesden- Popper compound with excellent microwave dielectric properties. Journal of Materials Chemistry C, 2016, 4(8): 1720. |
[12] | JIANG C, WU S P, MA Q, et al. Synthesis and microwave dielectric properties of Nd2SiO5 ceramics. Journal of Alloys and Compounds, 2012, 544: 141. |
[13] | ZOU Z Y, CHEN Z H, LAN X K, et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics. Journal of the European Ceramic Society, 2017, 37(9): 3065. |
[14] | KRZMANC M M, VALANT M, JANCAR B, et al. Sub-solidus synthesis and microwave dielectric characterization of plagioclase feldspars. Journal of the American Ceramic Society, 2005, 88(9): 2472. |
[15] | SONG X Q, LEI W, ZHOU Y Y, et al. Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC. Journal of the American Ceramic Society, 2020, 103(2): 1140. |
[16] | HUANG L, DING S H, YAN X K, et al. Structure and microwave dielectric properties of BaAl2Si2O8 ceramic with Li2O-B2O3 sintering additive. Journal of Alloys and Compounds, 2020, 820: 153100. |
[17] | WANG Y R, DING S H, HOU Z P, et al. Structure and microwave dielectric properties of Li(Al1-xLix)SiO4-x ceramics. Ceramics International, 2023, 49(3): 4290. |
[18] | KWEON S H, JOUNG M R, KIM J S, et al. Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics. Journal of the American Ceramic Society, 2011, 94(7): 1995. |
[19] | JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M = Ba, Sr, Ca). Materials Letters, 2011, 65(5): 891. |
[20] | PELLETANT A, REVERON H, CHÊVALIER J, et al. Grain size dependence of pure β-eucryptite thermal expansion coefficient. Materials Letters, 2012, 66(1): 68. |
[21] | FERRAZ R F, PEREIRA M D C, OLIVEIRA R A P. Synthesis and characterization of β-spodumene by a new Sol-Gel route assisted by whey protein. Journal of Sol-Gel Science and Technology, 2024, 111(3): 718. |
[22] | WELSCH A M, MURAWSKI D, PREKAJSKI M, et al. Ionic conductivity in single-crystal LiAlSi2O6: influence of structure on lithium mobility. Physics and Chemistry of Minerals, 2015, 42(5): 413. |
[23] | WELSCH A M, BEHRENS H, ROSS S, et al. Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals. Zeitschrift für Physikalische Chemie, 2012, 226(5/6): 491. |
[24] | SHOU H W, DUAN Y H. Anisotropic elasticity and thermal conductivities of (α, β, γ)-LiAlSi2O6 from the first-principles calculation. Journal of Alloys and Compounds, 2018, 756: 40. |
[25] | LI C C, XIANG H C, YIN C Z, et al. Ultra-low loss microwave dielectric ceramic Li2Mg2TiO5 and low-temperature firing via B2O3 addition. Journal of Electronic Materials, 2018, 47(11): 6383. |
[26] | PENG R, LI Y X, SU H, et al. Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: calculation and experiment. Journal of Alloys and Compounds, 2020, 827: 154162. |
[27] | PENG R, LI Y X, TANG X L, et al. Improved sintering and microwave dielectric properties of Li2CaSiO4 ceramic with magnesium atom substitution. Ceramics International, 2020, 46(7): 8869. |
[28] | XIONG S Y, ZHU G B, ZHU X W, et al. Microstrip dielectric patch antenna fabrication and characterization using ultra low permittivity and low temperature Co-fired LiAlSiO4 ceramics. Journal of the European Ceramic Society, 2025, 45(2): 116930. |
[29] | LI C, DING S H, SONG T X, et al. Structure and microwave dielectric properties of BaAl2-2xLi2xSi2O8-2x ceramics. Ceramics International, 2021, 47(4): 4895. |
[30] | SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics, 1993, 73(1): 348. |
[31] | YIN C Z, DU K, ZHANG M, et al. Novel low-εr and lightweight LiBO2 microwave dielectric ceramics with good chemical compatibility with silver. Journal of the European Ceramic Society, 2022, 42(11): 4580. |
[32] | XING Z, YIN C Z, YU Z Z, et al. Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies. Ceramics International, 2020, 46(14): 22460. |
[33] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751. |
[34] | YOON S H, KIM D W, CHO S Y, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society, 2006, 26(10):2051. |
[35] | SU C X, AO L Y, ZHANG Z W, et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature- stable LiYbSiO4 ceramics. Ceramics International, 2020, 46(12): 19996. |
[36] | KIM E S, CHUN B S, FREER R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. Journal of the European Ceramic Society, 2010, 30(7): 1731. |
[37] | DU Q B, TANG Y, LI J, et al. A low-εr and high-Q microwave dielectric ceramic Li2SrSiO4 with abnormally low sintering temperature. Journal of the European Ceramic Society, 2021, 41(15): 7678. |
[38] | HUANG Y W, YANG X H, ZHANG Y C. Novel single-phase Li2SiO3 microwave dielectric ceramic with low permittivity. Journal of the European Ceramic Society, 2025, 45(2): 116940. |
[39] | REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 2006, 89(7):2063. |
[40] | PARK H S, YOON K H, KIM E S. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. Materials Chemistry and Physics, 2003, 79(2): 181. |
[41] | GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. Journal of the European Ceramic Society, 2006, 26(10): 1827. |
[42] | ZOU Z Y, DU K, LAN X K, et al. Anti-reductive characteristics and dielectric loss mechanisms of Ba2ZnSi2O7 microwave dielectric ceramic. Ceramics International, 2019, 45(15): 19415. |
[43] | XIAO M, WEI Y S, SUN H R, et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 20339. |
[44] | HE Y H, WEI X L, HE G Q, et al. Sintering behavior, phase composition, microstructure, and dielectric properties of low- permittivity alkaline earth silicate Sr3MgSi2O8 ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33(35): 26263. |
[45] | DOU G, ZHOU D X, GONG S P, et al. Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass. Journal of Materials Science: Materials in Electronics, 2013, 24(5): 1601. |
[1] | LIU Lin, FANG You-Wei, DENG Xin-Feng, ZHUANG Wen-Dong, TANG Bin, ZHANG Shu-Ren. Crystal Structures and Microwave Dielectric Properties of (Ba1-xSrx)La4Ti4O15 (x=0.8-0.95) Ceramics [J]. Journal of Inorganic Materials, 2012, 27(3): 281-284. |
[2] | WANG Nai-Gang,LUO Lan,CHEN Wei,ZHANG Gan-Cheng,GUI Jian-Fei. Crystallization and Microwave Dielectric Properties of MgO-Al2O3-SiO2-TiO2-CeO2 Glass-ceramics [J]. Journal of Inorganic Materials, 2003, 18(3): 547-552. |
[3] | LIAN Fang,XU Li-Hua,WANG Fu-Ming,LI Wen-Chao. A New Wet-Chemical Approach to Synthesis Ba(Mg1/3Ta2/3)O3 Nanometric Powder [J]. Journal of Inorganic Materials, 2002, 17(2): 247-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||