Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (8): 955-964.DOI: 10.15541/jim20240035
Special Issue: 【结构材料】超高温结构陶瓷(202409)
TAN Min1,2(), CHEN Xiaowu1,2(
), YANG Jinshan1,2, ZHANG Xiangyu1,2, KAN Yanmei1,2, ZHOU Haijun1,2, XUE Yudong1,2, DONG Shaoming1,2(
)
Received:
2024-01-16
Revised:
2024-03-04
Published:
2024-08-20
Online:
2024-03-30
Contact:
CHEN Xiaowu, associate professor. E-mail: xwchen@mail.sic.ac.cn;About author:
TAN Min (1998-), male, Master candidate. E-mail: tanmin21@mails.ucas.ac.cn
Supported by:
CLC Number:
TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration[J]. Journal of Inorganic Materials, 2024, 39(8): 955-964.
ZBC | ZS | ||||
---|---|---|---|---|---|
Raw materials | ZrSi2 | B4C | C | ZrB2 | SiC |
Molar ratio | 2 | 1 | 3 | 1 | 2 |
Table 1 Raw materials and their molar ratios for ceramics preparation
ZBC | ZS | ||||
---|---|---|---|---|---|
Raw materials | ZrSi2 | B4C | C | ZrB2 | SiC |
Molar ratio | 2 | 1 | 3 | 1 | 2 |
Fig. 2 Microstructure and morphology of ZBC samples (a) XRD patterns of ZBC porous preforms before and after heat treatment; (b) Cross-sectional morphology of ZBC porous preforms after heat treatment; (c) XRD patterns of ceramics after reactive melt infiltration
[1] | FU Q, ZHANG P, ZHUANG L, et al. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: take carbon/carbon composites and their coatings as the examples. Journal of Materials Science & Technology, 2022, 96: 31. |
[2] | ZHANG G J, NI D W, ZOU J, et al. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—a review. Journal of the European Ceramic Society, 2018, 38(2): 371. |
[3] | THIMMAPPA S K, GOLLA B R, PPRASAD VVB. Oxidation behavior of silicon-based ceramics reinforced diboride UHTC: a review. Silicon, 2022, 14(18): 12049. |
[4] | MUNGIGUERRA S, SILVESTRONI L, SAVINO R, et al. Qualification and reusability of long and short fibre-reinforced ultra-refractory composites for aerospace thermal protection systems. Corrosion Science, 2022, 195: 109955. |
[5] | ZHANG P, FU Q G, CHENG C Y, et al. Microstructure evolution of in-situ SiC-HfB2-Si ternary coating and its corrosion behaviors at ultra-high temperatures. Journal of the European Ceramic Society, 2021, 41(13): 6223. |
[6] | VINCI A, ZOLI L, GALIZIA P, et al. Reactive melt infiltration of carbon fibre reinforced ZrB2/B composites with Zr2Cu. Composites Part A: Applied Science and Manufacturing, 2020, 137: 105973. |
[7] | LEVINE S R, OPILA E J, HALBIG M C, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society, 2002, 22(14/15): 2757. |
[8] | GOLLA B R, MUKHOPADHYAY A, BASU B, et al. Review on ultra-high temperature boride ceramics. Progress in Materials Science, 2020, 111: 100651. |
[9] | OPEKA M M, TALMY I G, ZAYKOSKI J A. Oxidation-based materials selection for 2000 ℃+hypersonic aerosurfaces: theoretical considerations and historical experience. Journal of Materials Science, 2004, 39(19): 5887. |
[10] | ZHANG S M, WANG S, LI W, et al. Microstructure and properties of W-ZrC composites prepared by the displacive compensation of porosity (DCP) method. Journal of Alloys and Compounds, 2011, 509(33): 8327. |
[11] | LI K Z, SHEN X T, LI H J, et al. Ablation of the carbon/carbon composite nozzle-throats in a small solid rocket motor. Carbon, 2011, 49(4): 1208. |
[12] | ZHANG Y L, HU H, ZHANG P F, et al. SiC/ZrB2-SiC-ZrC multilayer coating for carbon/carbon composites against ablation. Surface and Coatings Technology, 2016, 300: 1. |
[13] | YAN B, CHEN Z F, ZHU J X, et al. Effects of ablation at different regions in three-dimensional orthogonal C/SiC composites ablated by oxyacetylene torch at 1800 ℃. Journal of Materials Processing Technology, 2009, 209(7): 3438. |
[14] | VERMA V, CHEVERIKIN V, CÂMARA COZZA R. Review: effect on physical, mechanical, and wear performance of ZrB2-based composites processed with or without additives. International Journal of Applied Ceramic Technology, 2020, 17(6): 2509. |
[15] | LIU Y J, ZU Y F, TIAN H L, et al. Microstructure and mechanical properties of continuous carbon fiber-reinforced ZrB2-based composites via combined electrophoretic deposition and sintering. Journal of the European Ceramic Society, 2021, 41(3): 1779. |
[16] | BALBO A, SCITI D. Spark plasma sintering and hot pressing of ZrB2-MoSi2 ultra-high-temperature ceramics. Materials Science and Engineering: A, 2008, 475(1/2): 108. |
[17] | FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 2007, 90(5): 1347. |
[18] | ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G, et al. Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. Journal of the American Ceramic Society, 2008, 91(5): 1405. |
[19] | REZAIE A, FAHRENHOLTZ W G, HILMAS G E. Oxidation of zirconium diboride-silicon carbide at 1500 ℃ at a low partial pressure of oxygen. Journal of the American Ceramic Society, 2006, 89(10): 3240. |
[20] | ZOU J, ZHANG G J, HU C F, et al. Strong ZrB2-SiC-WC ceramics at 1600 ℃. Journal of the American Ceramic Society, 2012, 95(3): 874. |
[21] | NEUMAN E W, HILMAS G E, FAHRENHOLTZ W G. Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200 ℃. Journal of the European Ceramic Society, 2015, 35(2): 463. |
[22] | SILVESTRONI L, KLEEBE H J, FAHRENHOLTZ W G, et al. Super-strong materials for temperatures exceeding 2000 ℃. Scientific Reports, 2017, 7: 40730. |
[23] | SILVESTRONI L, SCITI D. Effects of MoSi2 additions on the properties of Hf- and Zr-B2 composites produced by pressureless sintering. Scripta Materialia, 2007, 57(2): 165. |
[24] | ZHAO L T, HOU C, JIN X C, et al. Oxidation behaviors of ZrB2-SiC ceramics with different porosity. Advanced Engineering Materials, 2023, 25(8): 20221313. |
[25] | SILVESTRONI L, MERIGGI G, SCITI D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corrosion Science, 2014, 83: 281. |
[26] | D’AMICO C, BIANCHI G, PADOVANO E, et al. Effect of ZrB2 addition on the oxidation behavior of Si-SiC-ZrB2 composites exposed at 1500 ℃ in the air. Journal of Applied Biomaterials & Functional Materials, 2018, 16(1): 14. |
[27] | LEE S H, FENG L, BAE C J. Densification of ZrB2-SiC nanocomposites prepared using ZrSi2, B4C, and C additives. Journal of Materials Research, 2017, 32(17): 3302. |
[28] | YOSHIASA A, TOBASE T, ARIMA-OSONOI H, et al. High-temperature diffraction experiments and phase diagram of ZrO2 and ZrSiO4. Zeitschrift Für Naturforschung B, 2021, 76(10/11/12): 591. |
[1] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[2] | ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 681-690. |
[3] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[4] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[5] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[6] | SUN Xiaofan, CHEN Xiaowu, JIN Xihai, KAN Yanmei, HU Jianbao, DONG Shaoming. Fabrication and Properties of AlN-SiC Multiphase Ceramics via Low Temperature Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2023, 38(10): 1223-1229. |
[7] | ZHANG Junmin, CHEN Xiaowu, LIAO Chunjin, GUO Feiyu, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Optimizing Microstructure and Properties of SiCf/SiC Composites Prepared by Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2021, 36(10): 1103-1110. |
[8] | ZHANG Zhao-Fu,SHA Jian-Jun,ZU Yu-Fei,DAI Ji-Xiang. ZrB2-SiC Composites Toughened by Interlocking Microstructure and Chopped Carbon Fiber [J]. Journal of Inorganic Materials, 2019, 34(9): 918-924. |
[9] | Shu-Guang ZHOU, Yi-Jun GUO, Xiao LIU. Simulation of ZrB2 Oxidation Behavior at Constant Temperature Ambient [J]. Journal of Inorganic Materials, 2019, 34(6): 660-666. |
[10] | ZHENG Hai-Ya, MENG Chen-Xi, HU Dong-Li, GU Hui, LIU Hai-Tao, ZHANG Guo-Jun. EBSD Analysis for Orientation Relationship of Textured ZrB2-SiC Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2018, 33(4): 380-384. |
[11] | ZHENG Qiang, WANG Xian-Hao, XING Juan-Juan, GU Hui, ZHANG Guo-Jun. Quantitative Analysis for Phase Compositions of ZrB2-SiC-ZrC Ultra-High Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2013, 28(4): 358-362. |
[12] | ZHOU Hai-Jun, ZHANG Xiang-Yu, GAO Le, HU Jian-Bao, WU Bin, DONG Shao-Ming. Ablation Properties of ZrB2-SiC Ultra-high Temperature Ceramic Coatings [J]. Journal of Inorganic Materials, 2013, 28(3): 256-260. |
[13] | WANG Xin-Gang,LIU Ji-Xuan,KAN Yan-Mei,ZHANG Guo-Jun,WANG Pei-Ling. Slip Casting and Pressureless Sintering of ZrB2-SiC Ceramics [J]. Journal of Inorganic Materials, 2009, 24(4): 831-835. |
[14] | YAN Yong-Jie,ZHANG Hui,HUANG Zheng-Ren,LIU Xue-Jian. Oxidation Behaviors of the Pressureless Sintered ZrB2-SiC Composites [J]. Journal of Inorganic Materials, 2009, 24(3): 631-635. |
[15] |
OUYANG Hai-Bo,LI He-Jun,QI Le-Hua,LI Zheng-Jia,WEI Jian-Feng.
Microstructure and Oxidation Behavior of the SiC/PyC Multilayer Coated Carbon Fibers [J]. Journal of Inorganic Materials, 2009, 24(1): 103-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||