Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 731-740.DOI: 10.15541/jim20210535
Special Issue: 【能源环境】光催化(202312); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Xiaojun1(), XU Wen2, LIU Runlu1, PAN Hui1,3(
), ZHU Shenmin1(
)
Received:
2021-08-27
Revised:
2022-01-24
Published:
2022-07-20
Online:
2022-02-21
Contact:
ZHU Shenmin, professor. E-mail: smzhu@sjtu.edu.cn;About author:
WANG Xiaojun (1999-), male, Bachelor. E-mail: chunyu@sjtu.edu.cn
Supported by:
CLC Number:
WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel[J]. Journal of Inorganic Materials, 2022, 37(7): 731-740.
Fig. 4 XRD patterns of C3N4, Ag@C3N4, SA and SA/Ag@C3N4 (a), and magnified XRD patterns of SA/Ag@C3N4(b) Colorful figures are available on the website
Fig. 5 N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of C3N4, Ag@C3N4 and SA/Ag@C3N4 Colorful figures are available on the website
Fig. 8 Methyl orange degradation curves (a), degradation rates (b) of C3N4, Ag@C3N4, SA, and SA/Ag@C3N4, and cyclic stability(c) of SA/Ag@C3N4 Colorful figures are available on the website
Fig. 10 (a) UV-Vis diffuse reflection spectra and (b) (αhν)0.5 vs hν curves of C3N4, Ag@C3N4, SA and SA/Ag@C3N4 Colorful figures are available on the website
Fig. 11 EPR spectra of C3N4 (a, b), Ag@C3N4 (c, d) and SA/Ag@C3N4 (e, f) during detecting ·OH (a, c, e) and ·O2- (b, d, f) Colorful figures are available on the website
[1] | 陈思, 李侃, 徐云兰, 等. N、F掺杂的TiO2膜电极在可见光条件下光电催化氧化诱惑红脱色效果的研究. 净水技术, 2009, 28(4): 55-59. |
[2] | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展. 化工学报, 2013, 64(1): 84-94. |
[3] |
CHEN Q H, XIN Y J, ZHU X W. Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochimica Acta, 2015, 186: 34-42.
DOI URL |
[4] |
MARDAREV D, TEODORESCU V, IANCULESCU A, et al. Thermal behavior study of some Sol-Gel TiO2 based materials. Journal of Thermal Analysis and Calorimetry, 2008, 92(1): 7-13.
DOI URL |
[5] | XIN G, MENG Y. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue. Journal of Chemistry, 2013, 2013: 1-5. |
[6] |
JI H, CHANG F, HU X, et al. Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation. Chemical Engineering Journal, 2013, 218: 183-190.
DOI URL |
[7] |
LI X H, ZHANG J, CHEN X, et al. Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chemistry of Materials, 2011, 23(19): 4344-4348.
DOI URL |
[8] |
JORGE A B, MARTIN D J, DHANOA M T S, et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. Physical Chemistry C, 2013, 117(14): 7178-7185.
DOI URL |
[9] |
CHEN Q, LI S, XU H, et al. Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction. Chinese Journal of Catalysis, 2020, 41(3): 514-523.
DOI URL |
[10] |
HAN C Q, LI J, MA Z Y, et al. Black phosphorus quantum dot/g-C3N4composites for enhanced CO2 photoreduction to CO. Science China Materials, 2018, 61(9): 1159-1166.
DOI URL |
[11] | 张家晶, 郑永杰, 金春雪, 等. g-C3N4基光催化剂改性的研究进展. 现代化工, 2021, 3: 42-47. |
[12] |
ZHANG J S, CHEN X F, TAKANABE K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angewandte Chemie International Edition, 2010, 49(2): 441-444.
DOI URL |
[13] | MENG J C, WANG X Y, LIU Y Q, et al. Acid-induced molecule self-assembly synthesis of Z-scheme WO3/g-C3N4 heterojunctions for robust photocatalysis against phenolic pollutants. Chemical Engineering Journal, 2021, 403: 126354. |
[14] |
KREIBIG U. Electronic properties of small silver particles: the optical constants and their temperature dependence. Journal of Physics F: Metal Physics, 1974, 4: 999-1014.
DOI URL |
[15] | 刘兵, 周益民, 吴清珍, 等. 纤维素水凝胶包覆Fe3O4类Fenton纳米催化剂的制备及其催化降解性能. 材料科学与工程学报, 2017, 35(1): 119-124. |
[16] | 冯华伟, 薛长国, 林秀玲. 海藻酸钠-碳材料复合凝胶吸附水中污染物的研究进展. 化工新型材料, 2021, 49(3): 241-244. |
[17] | 李莉, 郭伊荇, 周萍, 等. 孔道结构H3PW12O40/TiO2的制备及其可见光光催化降解水溶性染料的性能. 催化学报, 2005, 3: 209-215. |
[18] | 张晨宇, 王利强. 添加LDH-ZnO的海藻酸钠基抗菌复合材料研究综述. 包装工程, 2020, 41(23): 76-82. |
[19] |
KHAN S B, AHMAD S, KAMAL T, et al. Metal nanoparticles decorated sodium alginatecarbon nitride composite beads as effective catalyst for the reduction of organic pollutants. International Journal of Biological Macromolecules, 2020, 164: 1087-1098.
DOI URL |
[20] |
BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 1951, 73(1): 373-380.
DOI URL |
[21] |
BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938, 60(2): 309-319.
DOI URL |
[22] |
ZHENG Y, LIN L, YE X, et al. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angewandte Chemie International Edition, 2014, 53: 11926-11930.
DOI URL |
[23] |
WATERHOUSE G, BOWMAKER G A, METSON J B. The thermal decomposition of silver (I, Ⅲ) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Physical Chemistry Chemical Physics, 2001, 3(17): 3838-3845.
DOI URL |
[24] |
FAN J C, SHI Z X, LIAN M, et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. Journal of Materials Chemistry A, 2013, 1(25): 7433-7443.
DOI URL |
[25] |
ITHIARA D, BIANCA C S, ALVARO L M, et al. Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst. International Journal of Biological Macromolecules, 2019, 137: 992-1001.
DOI URL |
[26] | MOHSIN N, ALAMGIR A K, ABID H, et al. Reduced graphene oxide-TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere, 2020, 261: 127702. |
[27] |
MOHSIN N, MOKREMA M, JIHO K, et al. Photodegradation of microcystin-LR using graphene-TiO2/sodium alginate aerogels. Carbohydrate Polymers, 2018, 199: 109-118.
DOI URL |
[28] | 樊新, 黄可龙, 刘素琴, 等. 化学还原法制备纳米银粒子及其表征. 功能材料, 2007, 38(6): 996-999. |
[29] |
WANG X, MAEDA K, THOMAS A, et al. A metal- free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8: 76-80.
DOI URL |
[30] | 金瑞瑞, 游继光, 张倩, 等. Fe掺杂g-C3N4的制备及其可见光催化性能. 物理化学学报, 2014, 30(9): 1706-1712. |
[31] | YU X, HU C W, HAO D N, et al. Tubular carbon nitride with hierarchical network: localized charge carrier generation and reduced charge recombination for high-performance photocatalysis of H2 and H2O2 production. Solar RRL, 2020, 5(5): 566-571. |
[32] | 查莉, 王璐瑶, 郑雅慧, 等. 纤维素/海藻酸钠复合气凝胶的表面功能化与仿生矿化. 功能高分子学报, 2020, 33(4): 382-389. |
[33] |
TONG Q, DONG Y M, YAN L, et al. High-efficient synthesis and photo catalytic properties of Ag/AgBr/TiO2monolithic photocatalysts using sodium alginate as substrate. Journal of Inorganic Materials, 2017, 32(6): 637-642.
DOI URL |
[34] | JING H, LI W, ZHOU H M, et al. Metallic MoO2-modified graphitic carbon nitride boosting photocatalytic CO2 reduction via Schottky junction. Solar RRL, 2020, 4(8): 841-848. |
[35] | ZHANG Y Z, HUANG Z X, SHI J W, et al. Maleic hydrazide- based molecule doping in three-dimensional lettuce-like graphite carbon nitride towards highly effiffifficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 272: 119009. |
[36] | CHENG L, YIN H, CAI C, et al. Single Ni atoms anchored on porous few-layer g-C3N4 for photocatalytic CO2 reduction: the role of edge confinement. Small, 2020, 16: 986-996. |
[37] | SUBHAJYOTI S, RAJKUMAR Y, ABHINAV K, et al. Surface modifified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Applied Catalysis B: Environmental, 2019, 259: 118054. |
[38] |
ZENG Z X, YU H T, QUAN X, et al. Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 227: 153-160.
DOI URL |
[39] | FRANZ URBACH. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 1953, 92(5): 1324. |
[40] |
CUSHING S K, LI J, MENG F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society, 2012, 134(36): 15033-15041.
DOI URL |
[41] |
ALBERTO A, DI W. Photoelectrochemical properties of graphene and its derivatives. Nanomaterials, 2013, 3: 325-356.
DOI URL |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[4] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[5] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[6] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[7] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[8] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[9] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[10] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. |
[11] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[12] | WU Aijun, ZHU Min, ZHU Yufang. Copper-incorporated Calcium Silicate Nanorods Composite Hydrogels for Tumor Therapy and Skin Wound Healing [J]. Journal of Inorganic Materials, 2022, 37(11): 1203-1216. |
[13] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[14] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[15] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||