Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 954-962.DOI: 10.15541/jim20220711
Special Issue: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409); 【能源环境】超级电容器(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
XU Zhou(), LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha(
), LIU Shouxin(
)
Received:
2022-11-28
Revised:
2023-02-25
Published:
2023-03-24
Online:
2023-03-24
Contact:
LUO Sha, engineer. E-mail: luo.sha.85@163.com;About author:
XU Zhou (1993-), male, PhD candidate. E-mail: xuzhou0194@126.com
Supported by:
CLC Number:
XU Zhou, LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha, LIU Shouxin. Horseshoe-shaped Hollow Porous Carbon: Synthesis by Hydrothermal Carbonization with Dual-template and Electrochemical Property[J]. Journal of Inorganic Materials, 2023, 38(8): 954-962.
Fig. 1 (a-f) SEM and (g-l) TEM images of carbon precursors with different P123/SDS mass ratios (a, g) HNS-S-12; (b, h) HNS-0.625-12; (c, i) HNS-1.25-12; (d, j) HNS-2.5-12; (e, k) HNS-5-12; (f, l) HNS-P-12
Fig. 2 (a-e) SEM and (f-j) TEM images of carbon precursors after hydrothermal treatment for different periods (a, f) HNS-1.25-3; (b, g) HNS-1.25-8; (c, h) HNS-1.25-12; (d, i) HNS-1.25-18; (e, j) HNS-1.25-24
Sample | Average diameter of particle/nm | Average diameter of inner cavity/nm | Average diameter of carbon wall/nm | Opening angle/(°) | pH dependence |
---|---|---|---|---|---|
HNS-1.25-0 | - | - | - | - | 7.27 |
HNS-1.25-3 | - | - | - | - | 3.53 |
HNS-1.25-8 | 110 | 60 | 25 | 48 | 3.35 |
HNS-1.25-12 | 140 | 80 | 30 | 63 | 3.32 |
HNS-1.25-18 | 230 | 40 | 95 | 39 | 3.25 |
HNS-1.25-24 | 300 | 0 | 150 | 0 | 3.18 |
Table 1 Average diameters of particles, inner cavities, carbon walls, opening angles, and pH dependence of different samples
Sample | Average diameter of particle/nm | Average diameter of inner cavity/nm | Average diameter of carbon wall/nm | Opening angle/(°) | pH dependence |
---|---|---|---|---|---|
HNS-1.25-0 | - | - | - | - | 7.27 |
HNS-1.25-3 | - | - | - | - | 3.53 |
HNS-1.25-8 | 110 | 60 | 25 | 48 | 3.35 |
HNS-1.25-12 | 140 | 80 | 30 | 63 | 3.32 |
HNS-1.25-18 | 230 | 40 | 95 | 39 | 3.25 |
HNS-1.25-24 | 300 | 0 | 150 | 0 | 3.18 |
Fig. 7 (a) CV curves at 5-100 mV∙s-1 and (b) GCD curves at 1-20 A∙g-1 of HNCS-1.25-12; (c) Specific capacitances and Coulombic efficiencies (inset) at 1-20 A∙g-1, (d) relationship between specific capacitance with diameter of cavity at 1 A∙g-1 and (e) Nyquist plots with equivalent circuit (inset) of different samples; (f) Cycling stability of HNCS-1.25-12
Fig. S8 Electrochemical performance of different materials in two-electrode system (a) CV curves at 10-100 mV∙s-1 and (b) GCD curves at 0.2-5 A∙g-1 of HNCS-1.25-12; (c) Specific capacitances and Coulombic efficiencies (inset) at 0.2-5 A∙g-1;, (d) Ragone plot with inset showing picture of lit-up LED and (e) relationship between energy density and diameter of cavity at power density of 2500 W∙kg-1 for different samples; (g) Cycling stability of HNCS-1.25-12
Sample | Specific surface area, SBET/(m2·g-1) | Micropore specific surface area, Smicro /(m2·g-1) | Ratio of micropore, Smicro/SBET | Total pore volume /(cm3·g-1) | Pore volume of micropore/(cm3·g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
HNS-1.25-12 | 9 | - | - | 0.03 | - | 11.90 |
HNCS-1.25-8 | 619 | 590 | 95.32% | 0.23 | 0.22 | 1.49 |
HNCS-1.25-12 | 611 | 581 | 95.09% | 0.23 | 0.22 | 1.52 |
HNCS-1.25-18 | 617 | 550 | 89.14% | 0.32 | 0.21 | 1.84 |
HNCS-1.25-24 | 588 | 518 | 88.10% | 0.32 | 0.20 | 1.87 |
Table S1 Textural parameters of different samples
Sample | Specific surface area, SBET/(m2·g-1) | Micropore specific surface area, Smicro /(m2·g-1) | Ratio of micropore, Smicro/SBET | Total pore volume /(cm3·g-1) | Pore volume of micropore/(cm3·g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
HNS-1.25-12 | 9 | - | - | 0.03 | - | 11.90 |
HNCS-1.25-8 | 619 | 590 | 95.32% | 0.23 | 0.22 | 1.49 |
HNCS-1.25-12 | 611 | 581 | 95.09% | 0.23 | 0.22 | 1.52 |
HNCS-1.25-18 | 617 | 550 | 89.14% | 0.32 | 0.21 | 1.84 |
HNCS-1.25-24 | 588 | 518 | 88.10% | 0.32 | 0.20 | 1.87 |
Samples | Capacitance/ (F·g-1) | Current density/ (A·g-1) | Electrolyte | Ref. |
---|---|---|---|---|
NMHCSS | 240 | 0.2 | 6 mol∙L-1 KOH | [ |
HFC | 238 | 0.5 | 6 mol∙L-1 KOH | [ |
Fe2O3@Gr-CNT/NF | 114 | 1 | 2 mol∙L-1 KOH | [ |
BHPC | 187 | 0.5 | 6 mol∙L-1 KOH | [ |
ACS | 218 | 0.2 | 6 mol∙L-1 NaOH | [ |
N-MWCNTs | 184 | 0.5 | 5 mol∙L-1 KOH | [ |
SC-ZN | 263 | 0.5 | 6 mol∙L-1 KOH | [ |
PN-ECB | 265 | 0.5 | 6 mol∙L-1 NaOH | [ |
NHPC | 225 | 0.25 | 3 mol∙L-1 NaOH | [ |
BPCS | 217 | 1 | 6 mol∙L-1 KOH | [ |
rGONS | 200 | 0.5 | 6 mol∙L-1 KOH | [ |
HNCS-1.25-12 | 292 | 1 | 6 mol∙L-1 KOH | This work |
Table S2 Capacitive properties of doped-carbon materials reported in literature
Samples | Capacitance/ (F·g-1) | Current density/ (A·g-1) | Electrolyte | Ref. |
---|---|---|---|---|
NMHCSS | 240 | 0.2 | 6 mol∙L-1 KOH | [ |
HFC | 238 | 0.5 | 6 mol∙L-1 KOH | [ |
Fe2O3@Gr-CNT/NF | 114 | 1 | 2 mol∙L-1 KOH | [ |
BHPC | 187 | 0.5 | 6 mol∙L-1 KOH | [ |
ACS | 218 | 0.2 | 6 mol∙L-1 NaOH | [ |
N-MWCNTs | 184 | 0.5 | 5 mol∙L-1 KOH | [ |
SC-ZN | 263 | 0.5 | 6 mol∙L-1 KOH | [ |
PN-ECB | 265 | 0.5 | 6 mol∙L-1 NaOH | [ |
NHPC | 225 | 0.25 | 3 mol∙L-1 NaOH | [ |
BPCS | 217 | 1 | 6 mol∙L-1 KOH | [ |
rGONS | 200 | 0.5 | 6 mol∙L-1 KOH | [ |
HNCS-1.25-12 | 292 | 1 | 6 mol∙L-1 KOH | This work |
[1] | LIU F, CHENG Y, TAN J C, et al. Carbon nanomaterials with hollow structures: a mini-review. Frontiers in Chemistry, 2021, 9: 668336. |
[2] |
SUNDER A, KRÄMER M, HANSELMANN R, et al. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angewandte Chemie International Edition, 1999, 38(23): 3552.
DOI URL |
[3] | LIANG J, HU H, PARK H, et al. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy & Environmental Science, 2015, 8(6): 1707. |
[4] |
LIANG J, YU X Y, ZHOU H, et al. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angewandte Chemie International Edition, 2014, 53(47): 12803.
DOI URL |
[5] |
ZHANG W, CHENG R R, BI H H, et al. A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Materials, 2021, 36(1): 69.
DOI URL |
[6] |
ZHAO R G, WANG H, ZHANG X Y, et al. Hierarchically porous three-dimensional (3D) carbon nanorod networks with a high content of FeNx sites for efficient oxygen reduction reaction. Langmuir, 2022, 38(37): 11372.
DOI URL |
[7] | YU L, YU X Y, LOU X W. The design and synthesis of hollow micro-/nanostructures: present and future trends. Advanced Materials, 2018, 30(38): 1800939. |
[8] |
KAKANI V, RAMESH S, YADAV H M, et al. Hydrothermal synthesis of CuO@MnO2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications. Scientific Reports, 2022, 12(1): 12951.
DOI |
[9] | LACHOS-PEREZ D, TORRES-MAYANGA P C, ABAIDE E R, et al. Hydrothermal carbonization and liquefaction: differences, progress, challenges, and opportunities. Bioresource Technology, 2022, 343: 126084. |
[10] | KAN Y N, CHEN B W, ZHAI S C, et al. Chemical compositions of carbon sources affected on surface morphology and spectral properties of the synthetic carbon microspheres. Spectroscopy and Spectral Analysis, 2020, 40(10): 3153. |
[11] |
KANG S M, LI X L, FAN J, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Industrial & Engineering Chemistry Research, 2012, 51(26): 9023.
DOI URL |
[12] |
WANG S P, HAN C L, WANG J, et al. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chemistry of Materials, 2014, 26(23): 6872
DOI URL |
[13] |
XIONG S Q, FAN J C, WANG Y, et al. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5(34): 18242.
DOI URL |
[14] |
YANG Z C, TANG C H, GONG H, et al. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. Journal of Power Sources, 2013, 240: 713.
DOI URL |
[15] |
WU M B, AI P P, TAN M H, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chemical Engineering Journal, 2014, 245: 166.
DOI URL |
[16] |
WU Q, LI W, TAN J, et al. Flexible cage-like carbon spheres with ordered mesoporous structures prepared via a soft-template/ hydrothermal process from carboxymethylcellulose. RSC Advances, 2014, 4(16): 61518.
DOI URL |
[17] | XU Z, LIU Y X, XU C. F, et al. B-doped hierarchical porous carbon spheres prepared by xylose-soft template hydrothermal strategy for enhancing electrochemical property. Chinese Journal of Inorganic Chemistry, 2022, 38(10): 2006. |
[18] |
LIU H T, XU Y J, WANG J J, et al. A triple template of P123/SDS/CS with simultaneously enhanced utilization efficiency of P123 and crystal seeds. Journal of Alloys and Compounds, 2018, 765: 907.
DOI URL |
[19] |
WU Q, LI W, TAN J, et al. Hydrothermal carbonization of carboxymethylcellulose: one-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots. Chemical Engineering Journal, 2015, 266: 112.
DOI URL |
[20] |
WU Q, LI W, TAN J, et al. Hydrothermal synthesis of magnetic mesoporous carbon microspheres from carboxymethylcellulose and nickel acetate. Applied Surface Science, 2015, 332: 354.
DOI URL |
[21] |
TITIRICI M M, ANTONIETTI M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 2010, 39(1): 103.
DOI URL |
[22] |
WU L M, TONG D S, LI C S, et al. Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions. Applied Clay Science, 2016, 119: 116.
DOI URL |
[23] |
WANG G H, HILGERT J, RICHTER F H, et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nature Materials, 2014, 13(3): 293.
DOI |
[24] | XING Z B, GUO Z J, ZHANG Y W, et al. Regulation of SDS on the surface charge density of SB3-12 micelles and its effect on drug dissolution. Acta Physico-Chimica Sinica, 2020, 36(6): 1906006. |
[25] |
MONDAL R, GHOSH N, PAUL B K, et al. Triblock-copolymer- assisted mixed-micelle formation results in the refolding of unfolded protein. Langmuir, 2018, 34(3): 896.
DOI URL |
[26] |
HOSSAIN M K, HINATA S, LOPEZ-QUINTELA A, et al. Phase behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymer in water and water-C12EO5 systems. Journal of Dispersion Science and Technology, 2003, 24(3/4): 411.
DOI URL |
[27] |
KANCHARLA S, BEDROV D, TSIANOU M, et al. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small- angle neutron scattering with contrast variation. Journal of Colloid and Interface Science, 2022, 609: 456.
DOI URL |
[28] | YIN J, ZHANG W L, ALHEBSHI N A, et al. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853. |
[29] |
LONG S J, SI C D. Integrated gas expansion and activation strategy to prepare shaddock peel-derived nitrogen doped honeycomb carbon for high performance supercapacitor. Journal of Porous Materials, 2022, 29(5): 1639.
DOI |
[30] |
ZHANG F M, XIAO X S, GANDLA D, et al. Bio-derived carbon with tailored hierarchical pore structures and ultra-high specific surface area for superior and advanced supercapacitors. Nanomaterials, 2022, 12(1): 27.
DOI URL |
[31] | LIU X, SONG P P, HOU J H, et al. Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2797. |
[32] | LIN H H, TAN Z X, YANG J W, et al. Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode. Journal of Energy Storage, 2022, 53: 105036. |
[33] |
YEGANEH F, CHIEWCHAN N, CHONKAEW W. Hydrothermal pretreatment of biomass-waste-garlic skins in the cellulose nanofiber production process. Cellulose, 2022, 29(4): 2333.
DOI |
[34] | FU J Q, BAI L, CHI M S, et al. Study on the evolution pattern of the chemical structure of Fenton pretreated lignin during hydrothermal carbonization. Journal of Environmental Chemical Engineering, 2022, 10(2): 107184. |
[35] | JIA X, LI L C, TENG J W, et al. Glycation of rice protein and D-xylose pretreated through hydrothermal cooking-assisted high hydrostatic pressure: focus on the structural and functional properties. LWT, 2022, 160: 113194. |
[36] |
QIU W L, LEISEN J E, LIU Z Y, et al. Key features of polyimide- derived carbon molecular sieves. Angewandte Chemie International Edition, 2021, 60(41): 22322.
DOI URL |
[37] | MA L N, BI Z J, ZHANG W, et al. Synthesis of a Three-dimensional interconnected oxygen-, boron-, nitrogen-, and phosphorus tetratomic-doped porous carbon network as electrode material for the construction of a superior flexible supercapacitor. ACS Applied Materials & Interfaces, 2020, 12(41): 46170. |
[38] |
DU J, ZHANG Y, LÜ H J, et al. N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587: 780.
DOI URL |
[39] | PHOLAUYPHON W, BULAKHE R N, MANYAM J, et al. High- performance supercapacitors using carbon dots/titanium dioxide composite electrodes and carbon dot-added sulfuric acid electrolyte. Journal of Electroanalytical Chemistry, 2022, 910: 116177. |
[40] |
ZHANG J P, NING X A, LI D P, et al. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization. Journal of Environmental Sciences, 2022, 111: 282.
DOI URL |
[41] | ZHANG Y, LIU K Y, ZHANG W, et al. Electrochemical performance of electrodes in MnO2 supercapacitor. Acta Chimica Sinica, 2008, 66(8): 909. |
[42] |
HU Y R, DONG X L, HOU L, et al. Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo- capacitance. New Carbon Materials, 2021, 36(6): 1109.
DOI URL |
[43] |
ZHOU Y, XIAO N, QIU J S, et al. Preparation of carbon microfibers from coal liquefaction residue. Fuel, 2008, 87: 3474.
DOI URL |
[44] |
LIU C L, DONG W S, CAO G P, et al. Influence of KOH followed by oxidation pretreatment on the electrochemical performance of phenolic based activated carbon fibers. Journal of Electroanalytical Chemistry, 2007, 611: 225.
DOI URL |
[45] | CHEN Y, MA Y N, HUANG J D, et al. Fabricating dual redox electrolyte to achieve ultrahigh specific capacitance and reasonable Coulombic efficiency for biomass activated carbon. Electrochimica Acta, 2022, 414: 140215. |
[46] |
WANG M, YANG J, JIA K L, et al. Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks. Chemistry-A European Journal, 2020, 26: 2897.
DOI URL |
[47] |
LU W J, HAO L N, WANG Y W. Highly active N, S co-doped ultramicroporous carbon for high-performance supercapacitor electrodes. Micromachines, 2022, 13(6): 905.
DOI URL |
[48] |
JIAO J C, ZHU Y X, PENG X W, et al. Preparation of high capacitive performance porous carbon assisted by sodium dodecyl sulfate. Acta Chimica Sinica, 2021, 79: 778.
DOI URL |
[49] |
HU X, LIU H B, XIA X H, et al. Polyaniline-carbon pillared graphene composite: preparation and electrochemical performance. Journal of Inorganic Materials, 2019, 34(2): 145.
DOI URL |
[1] | HAO Yongxin, QIN Juan, SUN Jun, YANG Jinfeng, LI Qinglian, HUANG Guijun, XU Jingjun. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method [J]. Journal of Inorganic Materials, 2024, 39(10): 1167-1174. |
[2] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[3] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[4] | SHEN Xuanyi, MA Qin, XUE Yudong, LIAO Chunjin, ZHU Min, ZHANG Xiangyu, YANG Jinshan, DONG Shaoming. Effects of Multilayered Interfaces on Mechanical Damage of SiCf/SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(8): 917-922. |
[5] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[6] | MU Honghe, WANG Pengfei, SHI Yufeng, ZHANG Zhonghan, WU Anhua, SU Liangbi. Large-size CeF3 Crystal Growth by Heat Exchanger-Bridgman Method: Thermal Field Design and Optimization [J]. Journal of Inorganic Materials, 2023, 38(3): 288-295. |
[7] | SUN Han, LI Wenjun, JIA Zixuan, ZHANG Yan, YIN Liying, JIE Wanqi, XU Yadong. Effect of ACRT Technology on the Large Size ZnTe Crystals Grown by Solution Method and Corresponding Terahertz Properties [J]. Journal of Inorganic Materials, 2023, 38(3): 310-315. |
[8] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[9] | TAN Shuyu, LIU Xiaoning, BI Zhijie, WAN Yong, GUO Xiangxin. Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes [J]. Journal of Inorganic Materials, 2023, 38(12): 1466-1474. |
[10] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[11] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[12] | LI Tingting, ZHANG Yang, CHEN Jiahang, MIN Yulin, WANG Jiulin. Flexible Binder for S@pPAN Cathode of Lithium Sulfur Battery [J]. Journal of Inorganic Materials, 2022, 37(2): 182-188. |
[13] | ZHANG Wenjun, ZHAO Xueying, LÜ Jiangwei, QU Youpeng. Progresses on Hollow Periodic Mesoporous Organosilicas: Preparation and Application in Tumor Therapy [J]. Journal of Inorganic Materials, 2022, 37(11): 1192-1202. |
[14] | LI Huaxin, CHEN Junyong, XIAO Zhou, YUE Xian, YU Xianbo, XIANG Junhui. Research Progress of Biomimetic Self-assembly of Nanomaterials in Morphology and Performance Control [J]. Journal of Inorganic Materials, 2021, 36(7): 695-710. |
[15] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||