Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (5): 499-506.DOI: 10.15541/jim20210402
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
YE Fen1,2(), JIANG Xiangping1(
), CHEN Yunjing1, HUANG Xiaokun1, ZENG Renfen1, CHEN Chao1, NIE Xin1, CHENG Hao2(
)
Received:
2021-06-28
Revised:
2021-07-20
Published:
2022-05-20
Online:
2021-10-21
Contact:
JIANG Xiangping, professor. E-mail: jiangxp64@163.com; CHENG Hao, professor. E-mail: smallone.1@163.com
About author:
YE Fen (1987-), female, PhD candidate. E-mail: yefen1987@163.com
Supported by:
CLC Number:
YE Fen, JIANG Xiangping, CHEN Yunjing, HUANG Xiaokun, ZENG Renfen, CHEN Chao, NIE Xin, CHENG Hao. Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(5): 499-506.
Fig. 5 Dielectric property of NNCZ-xFe ceramics (a) Temperature dependence of relative permittivity of NNCZ-xFe ceramics; (b) Loss tangent of NNCZ-xFe ceramics; (c) Change of Curie temperature (TC) and dielectric constant at room temperature (RT) with the content of Fe3+colorful figures are available on website
Fig. 7 Breakdown strength and energy storage property of NNCZ-xFe ceramics (a) Breakdown strength; (b) Energy storage property before breakdown; (c, d) Energy storage property at different electric fields
Fig. 8 P-E loops and energy storage properties of NNCZ-0.02Fe ceramics at different temperatures and different frequencies (a) P-E loops of different temperatures; (b) Energy storage properties of different temperatures; (c) P-E loops of different frequencies; (b) Energy storage properties of different frequency
[1] | QI H, ZUO R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A, 2019,7(8):3971-3978. |
[2] | LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J. Eur. Ceram. Soc., 2018,38(15):4939-4945. |
[3] | ZHU L F, YAN Y K, LENG H Y,et al. Energy-storage performance of NaNbO3 based multilayered capacitors. J. Mater. Chem. C, 2021,9(25):7950-7957. |
[4] | SHIMIZU H, GUO H Z, REYES-LILLO S E,et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10). Dalton. T., 2015,44(23):10763-10772. |
[5] | LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics. Electronic Components and Materials, 2020,39(11):55-66. |
[6] | MATTHIAS B T. New ferroelectric crystals. Physical Review, 1949,75(11):1771. |
[7] | VOUSDEN P. The non-polarity of sodium niobate. Acta. Cryst., 1952,5(5):690. |
[8] | ZHANG H F, YANG B, YAN H X, et al. Isolation of a ferroelectric intermediate phase in antiferroelectric dense sodium niobate ceramics. Acta Mater., 2019,179:255-261. |
[9] | GUO H Z, SHIMIZU H, CLIVE A RANDALL. Microstructural evolution in NaNbO3-based antiferroelectrics. J. Appl. Phys., 2015,118(17):174107. |
[10] | GUO H Z, SHIMIZU H, CLIVE A RANDALL. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett., 2015,107(11):112904. |
[11] | GAO L S, GUO H Z, ZHANG S J,et al. Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops. Appl. Phys. Lett., 2018,112(9):092905. |
[12] | GUO H Z, SHIMIZU H, YOUICHI MIZUNO, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution. J. Appl. Phys., 2015,117(21):214103. |
[13] | GAO L S, GUO H Z, ZHANG S J, et al. A perovskite lead-free antiferroelectric xCaHfO3-( 1-x) NaNbO3 with induced double hysteresis loops at room temperature. J. Appl. Phys., 2016,120(20):204102. |
[14] | QI H, ZUO R Z, XIE A W, et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J. Eur. Ceram. Soc., 2019,39(13):3703-3709. |
[15] | YE J M, WANG G S, CHEN X F, et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics. J. Appl. Phys., 2019,114(12):122901. |
[16] | YE J M, WANG G S, CHEN X F,et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J. Materiomics, 2021,7(2):339-346. |
[17] | ZHAO L, LIU Q, ZHANG S J, et al. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C, 2016,4(36):8380-8384. |
[18] | WOLSKA A, MOLAK A, LAWNICZAK-JABLONSKA K,et al. XANES Mn K edge in NaNbO3 based ceramics doped with Mn and Bi ions. Phys. Scripta, 2005,2005(T115):989-991. |
[19] | CHAO L M, HOU Y D, ZHENG M P,et al. NaNbO3 nanoparticles: Rapid mechanochemical synthesis and high densification behavior. J. Alloy. Compd., 2017,695:3331-3338. |
[20] | DONG L, DONG G X, ZHANG Q. Dielectric properties of Fe2O3-doped MgTiO3-CaTiO3 microwave ceramics. Materials Review, 2016,30(5):47-50. |
[21] | WANG X, REN P R, REN D,et al. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength. Ceram. Int., 2020,47(3):3699-3705. |
[22] | KANG H B, CHANG J Y, KOH K,et al. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Inter., 2014,6(13):10576-10582 |
[23] | YANG B, BIAN J, WANG L, et al. Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Phys. Chem. Chem. Phys., 2019,21(22):11697-11704. |
[24] | GEOFFREY C ALLEN, IAN S BUTLER, COLIN KIRBY. Characterization of ferrocene and (η 6-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy . Inorg. Chim. Acta, 1987,134:289-292. |
[25] | YAN X D, ZHENG M P, ZHU M K, et al. Enhanced electrical resistivity and mechanical properties in BCTZ-based composite ceramic. J. Adv. Dielect., 2019,9:1950036. |
[26] | JIANG C B, MA C, LUO K H, et al. Piezoelectric and ferroelectric properties of Na0.5Bi4.5Ti4O15-BaTiO3 composite ceramics with Mg doping. J. Adv. Dielect., 2019,9:1950005. |
[27] | HU H, JIANG X P, CHEN C,et al. Influence of Ce 3+ substitution on the structure and electrical characteristics of bismuth-layer Na0.5Bi8.5Ti7O27 ceramics. J. Inorg. Mater. , 2019,34(9):997-1003. |
[28] | ROBERT D SHANNON, REINHARD X FISCHER. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B, 2006,73:235111. |
[29] | YANG L T, KONG X, LI F,et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 2019,102(May):72-108. |
[30] | WANG T, WANG Y H, YANG H B, et al. Dielectric and energy storage property of BaTiO3-ZnNb2O6 ceramics. J. Inorg. Mater., 2019,35(4):431-438. |
[31] | DU J H, LI Y, SUN N N, et al. Dielectric, ferroelectric and high energy storage behavior of (1-x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta Phys. Sin., 2020,69(12):127703. |
[1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[2] | SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties [J]. Journal of Inorganic Materials, 2024, 39(4): 423-431. |
[3] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[4] | CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites [J]. Journal of Inorganic Materials, 2023, 38(2): 155-162. |
[5] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[6] | WU Ming, XIAO Yanan, LI Huaqiang, LIU Yongbin, GAO Jinghui, ZHONG Lisheng, LOU Xiaojie. Negative Electrocaloric Effects in Antiferroelectric Materials: a Review [J]. Journal of Inorganic Materials, 2022, 37(4): 376-386. |
[7] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[8] | ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 379-385. |
[9] | BAI Jiawei, YANG Jing, LÜ Zhenfei, TANG Xiaodong. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43-48. |
[10] | WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2020, 35(4): 431-438. |
[11] | Hui GAN, Chuan-Bin WANG, Qiang SHEN, Lian-Meng ZHANG. Preparation of La2NiMnO6 Double-perovskite Ceramics by Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2019, 34(5): 541-545. |
[12] | HUANG Long, DING Shi-Hua, ZHANG Xiao-Yun, YAN Xin-Kan, LI Chao, ZHU Hui. Structure and Microwave Dielectric Property of BaAl2Si2O8 with Li2O-B2O3-SiO2 Glass Addition [J]. Journal of Inorganic Materials, 2019, 34(10): 1091-1096. |
[13] | MU Yang, DENG Jia-Xin, LI Hao, ZHOU Wan-Cheng. Comparison of High-temperature Dielectric and Microwave Absorbing Property of Two Continuous SiC Fibers [J]. Journal of Inorganic Materials, 2018, 33(4): 427-433. |
[14] | WU Yan-Qing, ZHANG Jia-Liang, LIU Da-Kang, SUN Dan-Dan. Physical Properties of Ba(Ti0.96Sn0.04)O3 Ceramics [J]. Journal of Inorganic Materials, 2016, 31(8): 850-854. |
[15] | SU Jing-Jie, YANG Zi, LI Yi-Feng, TANG Wei-Zhong, AN Xiao-Ming, GUO Hui. Measurement of Microwave Dielectric Properties of Diamond Films Using Split-cylinder Resonator Method [J]. Journal of Inorganic Materials, 2015, 30(7): 751-756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||