Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (12): 1301-1308.DOI: 10.15541/jim20190076
Special Issue: 离子电池材料
Previous Articles Next Articles
WANG Wu-Lian1,2,ZHANG Jun2,WANG Qiu-Shi2,CHEN Liang2,LIU Zhao-Ping2()
Received:
2019-02-22
Revised:
2019-04-08
Published:
2019-12-20
Online:
2019-05-29
Supported by:
CLC Number:
WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery[J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308.
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.9790 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.8901 |
C | 24e | 0.2024 | 0 | 0 | 0.9771 |
N | 24e | 0.2988 | 0 | 0 | 0.9771 |
Table 1 Fractional coordinates of HQ-FeHCF determined from Rietveld method
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.9790 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.8901 |
C | 24e | 0.2024 | 0 | 0 | 0.9771 |
N | 24e | 0.2988 | 0 | 0 | 0.9771 |
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.8458 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.6262 |
C | 24e | 0.2260 | 0 | 0 | 0.8420 |
N | 24e | 0.3275 | 0 | 0 | 0.8420 |
Table 2 Fractional coordinates of LQ-FeHCF determined from Rietveld method
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.8458 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.6262 |
C | 24e | 0.2260 | 0 | 0 | 0.8420 |
N | 24e | 0.3275 | 0 | 0 | 0.8420 |
Fig. 4 (a) Cyclic voltammogram (CV) curves of HQ-FeHCF and LQ-FeHCF at the sweep rate of 1 mV·s-1 in the electrolyte of Na-H2O-PEG; (b) Charge and discharge curves of HQ-FeHCF and LQ-FeHCF at 1C; (c) Rate performance of HQ-FeHCF and LQ-FeHCF; (d) Cycling performance of HQ-FeHCF and LQ-FeHCF
Fig. 8 (a) Cyclic voltammogram (CV) curves of HQ-FeHCF and NaTi2(PO4) at the sweep rate of 1 mV·s-1 in the electrolyte of Na-H2O-PEG; (b) Galvanostatic charge-discharge profiles at 1C for full cell, cathode, and anodein the electrolyte of Na-H2O-PEG; (c) Rate performance and (d) cycling performance of full cell
Cathode | Anode | Energy density/ (Wh·kg-1) | Ref. |
---|---|---|---|
Na0.44MnO2 | NaTi2(PO4)3 | 33 | [39] |
Na2Ni[Fe(CN)6] | NaTi2(PO4)3 | 43 | [13] |
Na2Cu[Fe(CN)6] | NaTi2(PO4)3 | 48 | [40] |
NaMnO2 | NaTi2(PO4)3 | 30 | [12] |
K0.27MnO2 | NaTi2(PO4)3 | 55 | [41] |
NaFePO4 | NaTi2(PO4)3 | 61 | [42] |
Na2VTi(PO4)3 | NaTi2(PO4)3 | 68 | [43] |
Na3MnTi(PO4)3 | NaTi2(PO4)3 | 82 | [44] |
Na0.66Mn0.66Ti0.34O2 | NaTi2(PO4)3 | 76 | [45] |
Na2Ni0.4Co0.6[Fe(CN)6] | NaTi2(PO4)3 | 121 | [46] |
Fe4[Fe(CN)6]3 | NaTi2(PO4)3 | 126 | This work |
Table 3 Energy density of different aqueous sodium-ion batteries
Cathode | Anode | Energy density/ (Wh·kg-1) | Ref. |
---|---|---|---|
Na0.44MnO2 | NaTi2(PO4)3 | 33 | [39] |
Na2Ni[Fe(CN)6] | NaTi2(PO4)3 | 43 | [13] |
Na2Cu[Fe(CN)6] | NaTi2(PO4)3 | 48 | [40] |
NaMnO2 | NaTi2(PO4)3 | 30 | [12] |
K0.27MnO2 | NaTi2(PO4)3 | 55 | [41] |
NaFePO4 | NaTi2(PO4)3 | 61 | [42] |
Na2VTi(PO4)3 | NaTi2(PO4)3 | 68 | [43] |
Na3MnTi(PO4)3 | NaTi2(PO4)3 | 82 | [44] |
Na0.66Mn0.66Ti0.34O2 | NaTi2(PO4)3 | 76 | [45] |
Na2Ni0.4Co0.6[Fe(CN)6] | NaTi2(PO4)3 | 121 | [46] |
Fe4[Fe(CN)6]3 | NaTi2(PO4)3 | 126 | This work |
[1] | CHEN L, SHAO H Z, ZHOU X F , et al. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nature Communications, 2016,7:11982. |
[2] | ZHANG L Y, CHEN L, ZHOU X F , et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials, 2015,5(2):1400930. |
[3] | ZU C X, LI H . Thermodynamic analysis on energy densities of batteries. Energy & Environmental Science, 2011,4(8):2614-2624. |
[4] | SUO L M, HU Y S, LI H , et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications, 2013,4:1481. |
[5] | SUO L M, BORODIN O, GAO T , et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015,350(6263):938-943. |
[6] | YAN J, WANG J, LIU H , et al. Rechargeable hybrid aqueous batteries. Journal of Power Sources, 2012,216:222-226. |
[7] | WANG Y G, YI J, XIA Y Y . Recent progress in aqueous lithium- ion batteries. Advanced Energy Materials, 2012,2(7):830-840. |
[8] | LUO J Y, CUI W J, HE P , et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chemistry, 2010,2(9):760-765. |
[9] | LUO J Y, XIA Y Y . Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Advanced Functional Materials, 2007,17(18):3877-3884. |
[10] | WANG Y G, LOU J Y, WU W , et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds III capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions. Journal of the Electrochemical Society, 2007,154(3):A228-A234. |
[11] | KIM D J, JUNG Y H, BHARATHI K K , et al. An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative. Advanced Energy Materials, 2014,4(12):1400133. |
[12] | HOU Z G, LI X N, LIANG J W , et al. An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. Journal of Materials Chemistry A, 2015,3(4):1400-1404. |
[13] | WU X Y, CAO Y L, AI X P , et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013,31:145-148. |
[14] | SUN X Q, DUFFORT V, MEHDI B L , et al. Investigation of the mechanism of Mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-ion batteries. Chemistry of Materials, 2016,28(2):534-542. |
[15] | CHENG Y W, LUO L L, ZHONG L , et al. Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Applied Materials & Interfaces, 2016,8(22):13673-13677. |
[16] | TROCOLI R, LA MANTIA F . An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem, 2015,8(3):481-485. |
[17] | XU C J, LI B H, DU H D , et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angewandte Chemie-International Edition, 2012,51(4):933-935. |
[18] | WANG X W, WANG F X, WANG L Y , et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Advanced Materials, 2016,28(24):4904-4911. |
[19] | LIU Z, PULLETIKURTHI G, ENDRES F . A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Applied Materials & Interfaces, 2016,8(19):12158-12164. |
[20] | ZHAO J W, LI Y Q, PENG X , et al. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of "water- in-salt" electrolyte. Electrochemistry Communications, 2016,69:6-10. |
[21] | LU K, SONG B, ZHANG J T , et al. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. Journal of Power Sources, 2016,321:257-263. |
[22] | HU P, WANG T S, ZHAO J W , et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Applied Materials & Interfaces, 2015,7(48):26396-26399. |
[23] | KE L L, DONG J, LIN B , et al. A NaV3(PO4)3@C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries. Nanoscale, 2017,9(12):4183-4190. |
[24] | WU X Y, SUN M Y, GUO S M , et al. Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat, 2015,1(3):188-193. |
[25] | YUAN S, ZHU Y H, LI W , et al. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy-and power-density sodium-ion batteries. Advanced Materials, 2017,29(4):6. |
[26] | JIANG P, SHAO H Z, CHEN L , et al. Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. Journal of Materials Chemistry A, 2017,5(32):16740-16747. |
[27] | LU Y H, WANG L, CHENG J G , et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chemical Communications, 2012,48(52):6544-6546. |
[28] | YOU Y, YU X Q, YIN Y X , et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015,8(1):117-128. |
[29] | WESSELLS C D, HUGGINS R A, CUI Y . Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nature Communications, 2011,2:550. |
[30] | WANG L, LU Y H, LIU J , et al. A superior low-cost cathode for a Na-ion battery. Angewandte Chemie-International Edition, 2013,52(7):1964-1967. |
[31] | YOU Y, WU X L, YIN Y X , et al. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy & Environmental Science, 2014,7(5):1643-1647. |
[32] | YUE Y F, BINDER A J, GUO B K , et al. Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angewandte Chemie-International Edition, 2014,53(12):3134-3137. |
[33] | WESSELLS C D, PEDDADA S V, HUGGINS R A , et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Letters, 2011,11(12):5421-5425. |
[34] | ZHANG L, WU H B, MADHAVI S , et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. Journal of the American Chemical Society, 2012,134(42):17388-17391. |
[35] | WU X Y, LUO Y, SUN M Y , et al. Low-defect prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy, 2015,13:117-123. |
[36] | WU X Y, WU C H, WEI C X , et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016,8(8):5393-5399. |
[37] | PADIGI P, THIEBES J, SWAN M , et al. Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochimica Acta, 2015,166:32-39. |
[38] | YANG D Z, XU J, LIAO X Z , et al. Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chemical Communications, 2015,51(38):8181-8184. |
[39] | LI Z, YOUNG D, XIANG K , et al. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Advanced Energy Materials, 2013,3(3):290-294. |
[40] | WU X Y, SUN M Y, SHEN Y F , et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem, 2014,7(2):407-411. |
[41] | LIU Y, QIAO Y, ZHANG W X , et al. High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014,5:97-104. |
[42] | FERNANDEZ-ROPERO A J, SAUREL D, ACEBEDO B , et al. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. Journal of Power Sources, 2015,291:40-45. |
[43] | WANG H B, ZHANG T R, CHEN C , et al. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Research, 2018,11(1):490-498. |
[44] | GAO H C, GOODENOUGH J B . An aqueous symmetric sodium- ion battery with NASICON-structured Na3MnTi(PO4)3. Angewandte Chemie-International Edition, 2016,55(41):12768-12772. |
[45] | WANG Y S, MU L Q, LIU J , et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium- ion batteries. Advanced Energy Materials, 2015,5(22):8. |
[46] | LI W F, ZHANG F, XIANG X D , et al. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6Fe(CN)6 nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017,121(50):27805-27812. |
[1] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[2] | WANG Shuling, JIANG Meng, WANG Lianjun, JIANG Wan. n-Type Pb-free AgBiSe2 Based Thermoelectric Materials with Stable Cubic Phase Structure [J]. Journal of Inorganic Materials, 2023, 38(7): 807-814. |
[3] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[4] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[5] | LI Yicun, LIU Xuedong, HAO Xiaobin, DAI Bing, LYU Jilei, ZHU Jiaqi. Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing [J]. Journal of Inorganic Materials, 2023, 38(3): 303-309. |
[6] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[7] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[8] | LI Wenbo, HUANG Minsong, LI Yueming, LI Chilin. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2022, 37(2): 173-181. |
[9] | Yong LI, Wei-Xin HE, Xin-Yue ZHENG, Sheng-Lan YU, Hai-Tong LI, Hong-Yi LI, Rong ZHANG, Yu WANG. Prussian Blue Cathode Materials for Aqueous Sodium-ion Batteries:Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(4): 365-372. |
[10] | WANG Jia-Hu, WANG Wen-Xin, DU Peng, HU Fang-Dong, JIANG Xiao-Lei, YANG Jian. Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(10): 1097-1102. |
[11] | LEE Sai-Xi, WANG Xue-Yin, GU Qing-Wen, XIA Yong-Gao, LIU Zhao-Ping, HE Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials [J]. Journal of Inorganic Materials, 2018, 33(9): 993-1000. |
[12] | LUO Ling-Hong, HU Jia-Xing, CHENG Liang, XU Xu, WU Ye-Fan, LIN You-Chen. Performance of the Composite Cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2-δ for Medium-low Temperature Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2018, 33(4): 441-446. |
[13] | LI Ling, LI Yun-Jiao, XU Bin, LU Wei-Sheng, SU Qian-Ye, CHEN Yong-Xiang, LI Lin. LiNixCoyMn1-x-yO2 Cathode Material Synthesized through Construction of E-pH Diagram and Its Electrochemical Performance [J]. Journal of Inorganic Materials, 2018, 33(3): 320-324. |
[14] | WANG Lu, KONG Wen-Jie, LUO Hang, ZHOU Xue-Fan, ZHOU Ke-Chao, ZHANG Dou. Dielectric and Energy Storage Property of Dielectric Nanocomposites with BaTiO3 Nanofibers [J]. Journal of Inorganic Materials, 2018, 33(10): 1059-1064. |
[15] | YANG Kun-Kun, YANG Shao-Hua, ZHAO Ping, ZHAO Yan-Long. Hydrothermal Synthesis of FeS2/Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Performance for Thermal Battery [J]. Journal of Inorganic Materials, 2017, 32(7): 691-698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||