Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (9): 993-1000.DOI: 10.15541/jim20170579
• Orginal Article • Previous Articles Next Articles
LEE Sai-Xi1, 2, WANG Xue-Yin2, GU Qing-Wen2, XIA Yong-Gao2, LIU Zhao-Ping2, HE Jie1
Received:
2017-12-04
Revised:
2018-03-31
Published:
2018-09-20
Online:
2018-08-14
About author:
LEE Sai-Xi. E-mail: saixi@nimte.ac.cn
CLC Number:
LEE Sai-Xi, WANG Xue-Yin, GU Qing-Wen, XIA Yong-Gao, LIU Zhao-Ping, HE Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials[J]. Journal of Inorganic Materials, 2018, 33(9): 993-1000.
Fig. 6 (a) Initial charge-discharge curves at 0.2C rate, and (b) cycling performance as well as coulombic efficiency at 1.0C rate for Non-stoichiometric-LNMO and Stoichiometric-LNMO samples
Ref. | 1st discharge capacity?(mAh.g-1) | Cycling performance?? | Rate capabiity?(mAh.g-1) |
---|---|---|---|
[15] | 124 (0.1C) | 90(250 cycles) | 120 (0.2C charge, 5C discharge) |
[19] | 129 (0.1C) | 83(300 cycles) | 110 (1C charge, 2C discharge) |
[20] | 135 (0.1C) | 88(80 cycles) | - |
This work | 132.8 (0.2C) | 91.2(400 cycles) | 122.4 (1C charge, 2C discharge) |
Table 1 Comparison with different methods to prepare high-voltage spinel cathode materials
Ref. | 1st discharge capacity?(mAh.g-1) | Cycling performance?? | Rate capabiity?(mAh.g-1) |
---|---|---|---|
[15] | 124 (0.1C) | 90(250 cycles) | 120 (0.2C charge, 5C discharge) |
[19] | 129 (0.1C) | 83(300 cycles) | 110 (1C charge, 2C discharge) |
[20] | 135 (0.1C) | 88(80 cycles) | - |
This work | 132.8 (0.2C) | 91.2(400 cycles) | 122.4 (1C charge, 2C discharge) |
Fig. 8 Charge-discharge curves of (a) Non-stoichiometric- LNMO, (b) Stoichiometric-LNMO at different rates, and (c) Capacity retention at different rates
[1] | BRUCE P G, FREUNBER S A, HARDWICK L J,et al. Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 2012, 11(10): 19-29. |
[2] | KANG B, CEDER G.Battery materials for ultra-fast charging and discharging.Nature, 2009, 458(7235): 190-193. |
[3] | MIZUSHIMA K, JONES P C P, WISEMAN J B, et al. LixCoO2(0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull., 1980, 15(6): 783-789. |
[4] | ARREBOLA J C, CABALLERO A, CRUZ M,et al. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer- assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv. Funct. Mater., 2006, 16(14): 1904-1912. |
[5] | GOODENOUGH J B, PARK K S, The Li-ion rechargeable battery: a perspective.J. Am. Chem. Soc., 2013, 135(4): 1167-1176. |
[6] | RUHUL A, ILIAS B.Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode.J. Power Sources, 2017, 348: 311-317. |
[7] | LIU D, ZHU W, TROTTIER J,et al. Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv., 2014, 4(1): 154-167. |
[8] | YOON T, PARK S, MUN J,et al. Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. J. Power Sources, 2012, 215: 312-316. |
[9] | MANTHIRAM A, CHEMELEWSKI K, LEE E S.A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries.Energy Environ. Sci., 2014, 7(4): 1339-1350. |
[10] | CABANA J, CABANS C M, OMENYA F O,et al. Composition- structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater., 2012, 24(15): 2952-2964. |
[11] | SONG J, SHIN D W, LU Y,et al. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x=0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater., 2012, 24(15): 3101-3109. |
[12] | MA X H, KANG B, CEDER G.High rate micron-sized ordered LiNi0.5Mn1.5O4. J. Electrochem. Soc., 2010, 157(8): A925-A931. |
[13] | ZHENG J M, XIAO J, YU X,et al. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys. Chem. Chem. Phys., 2012, 14(39): 13515-13521. |
[14] | WANG Y, CAO G.Developments in nanostructured cathode materials for high-performance lithium-ion batteries.Adv. Mater., 2008, 20(12): 2251-2269. |
[15] | XIAO J, CHEN X, SUSHKO P V,et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater., 2012, 24(16): 2109-2116. |
[16] | ZHANG X, CHENG F, ZHANG K,et al. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro-nanostructure and high rate capability. RSC Adv., 2012, 2(13): 5669-5675. |
[17] | ZHENG J, XIAO J, YU X,et al. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys. Chem. Phys., 2012, 14(39): 13515-13521. |
[18] | KIM H, MYUNG S T, YOON C S,et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332 cathodes. Chem. Mater., 2004, 16(5): 906-914. |
[19] | JO M R, KIM Y L, KIM Y,et al. Lithium-ion transport through a tailored disordered phase on the LiNi0.5Mn1.5O4 surface for high-power cathode materials. ChemSusChem, 2014, 7: 2248-2254. |
[20] | LEE J, DUPRE N, AVDEEV M,et al. Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni. Sci. Rep., 2017, 7: 6728-6739. |
[21] | CHANG Z R, CHEN Z J, WU F,et al. Preparation of Li(Ni1/3Co1/3Mn1/3)O2 by spherical Ni1/3Mn1/3Co1/3OOH at a low temperature. J. Power Sources, 2008, 185: 1408-1414. |
[22] | IDEMOTO Y, NARAI H, KOURA N. Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J. Power Sources, 2003, 119-121: 125-129. |
[23] | BACON G E.Coherent neutron scattering amplitudes.Acta Crystallographica Section A, 1972, 28(4): 357-358. |
[24] | ARIYOSHI K, IWAKOSHI Y, NAKAYAMA N,et al. Topotactic two-phase reactions of Li[Ni1/2Mn3/2] O4(P4332) in nonaqueous lithium cells. J. Electrochem. Soc., 2004, 151(2): A296-A303. |
[25] | OH S H, CHUNG K Y, JEON S H,et al. Structural and electrochemical investigations on the LiNi0.5-xMn1.5-yMx+yO4(M=Cr, Al, Zr) compound for 5 V cathode material. J. Alloys. Compd., 2009, 469(1/2): 244-250. |
[26] | TERADA Y, YASAKA K, NISHIKAWA F,et al. In situ XAFS analysis of Li(Mn, M)2O4(M=Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J. Solid State Chem., 2001, 156(2): 286-291. |
[27] | AMMUNDSEN B, ROZIERE J, ISLAM M S A. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganese oxide. J. Phys. Chem. B, 1997, 101(41): 8155-8163. |
[1] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
[2] | XIAO Min,XING Ru-Yue,YAO Shou-Guang,CHENG Jie,SHEN Ya-Ju,YANG Yu-Sheng. Preparation and Electrochemical Performance of Mn Doped Ni(OH)2 [J]. Journal of Inorganic Materials, 2019, 34(7): 703-708. |
[3] | LUO Ling-Hong, HU Jia-Xing, CHENG Liang, XU Xu, WU Ye-Fan, LIN You-Chen. Performance of the Composite Cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2-δ for Medium-low Temperature Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2018, 33(4): 441-446. |
[4] | CHEN Li-Neng, YAN Meng-Yu, MEI Zhi-Wen, MAI Li-Qiang. Research Progress and Prospect of Aqueous Zinc Ion Battery [J]. Journal of Inorganic Materials, 2017, 32(3): 225-234. |
[5] | LI Xiang, GE Wu-Jie, WANG Hao, QU Mei-Zhen. Research Progress on the Capacity Fading Mechanisms of High-Nickel Ternary Layered Oxide Cathode Materials [J]. Journal of Inorganic Materials, 2017, 32(2): 113-121. |
[6] | MA Ping-Ping, LIU Zhi-Jian, XIA Jian-Hua, LU Zhi-Chao. Electrochemical Performance of 0.7LiFePO4ּ0.3Li3V2(PO4)3/C Cathode Materials Using Polyethylene Glycol as Carbon Source [J]. Journal of Inorganic Materials, 2015, 30(2): 122-128. |
[7] | XIONG Ming-Wen, YIN Yi-Mei, YUAN Xian-Xia, MA Zi-Feng. Preparation and Performance of SrCo1-xGaxO3-δ Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2013, 28(7): 713-719. |
[8] | LIU Ling, YUAN Zhong-Zhi, QIU Cai-Xia, Cheng Si-Jie, LIU Jin-Cheng. Synthesis and Electrochemical Characteristics of the Novel FeS2/VGCF Material for Lithium-Ion Batteries [J]. Journal of Inorganic Materials, 2013, 28(12): 1291-1295. |
[9] | ZHAO Shi-Xi, LI Ying-Da, DING Hao, LI Bao-Hua, NAN Ce-Wen. Structure and Electrochemical Performance of LiFePO4/C Cathode Materials Coated with Nano Al2O3 for Lithium-ion Battery [J]. Journal of Inorganic Materials, 2013, 28(11): 1265-1269. |
[10] | ZHANG Qian, LIU Wei-Wei, FANG Guo-Qing, XIA Bing-Bo, SUN Hong-Dan, KANEKO Shingo, YANG Yu-Sheng, ZHENG Jun-Wei, LI De-Cheng. Structural and Electrochemical Performances of Li1+2xMn0.3+xNi0.3-3xCr0.4O2 Synthesized by Spray-dry Method [J]. Journal of Inorganic Materials, 2013, 28(06): 616-622. |
[11] | WANG Fang, LIANG Chun-Sheng, XU Da-Liang, CAO Hui-Qun, SUN Hong-Yuan, LUO Zhong-Kuan. Research Progress of Lithium-air Battery [J]. Journal of Inorganic Materials, 2012, 27(12): 1233-1242. |
[12] | CAO Yan-Bing, DUAN Jian-Guo, HU Guo-Rong, JIANG Feng, PENG Zhong-Dong, DU Ke. Synthesis of Li2FeSiO4/C Composite as Cathode Materials for Lithium Ion Battery by Microwave Assisted Solid Reaction Method [J]. Journal of Inorganic Materials, 2012, 27(10): 1023-1029. |
[13] | ZHAO Yu-Juan, FENG Hai-Lan, ZHAO Chun-Song, SUN Zhao-Qin. Progress of Research on the Li-rich Cathode Materials xLi2MnO3· (1-x) LiMO2 (M=Co, Fe, Ni1/2Mn1/2…) for Li-ion Batteries [J]. Journal of Inorganic Materials, 2011, 26(7): 673-679. |
[14] | ZHANG Dong-Yun,, ZHANG Pei-Xin, ,LIN Mu-Chong, LIU Kun, YUAN Qiu-Hua, XU Qi-Ming, LUO Zhong-Kuan, REN Xiang-Zhong. Property and Structure of Carbon-coated LiFePO4 [J]. Journal of Inorganic Materials, 2011, 26(3): 265-270. |
[15] | ZHOU Xin,ZHAO Xin-Bing,YU Hong-Ming,HU Jie-Zi. Electrochemical Properties of F-doped LiFePO4/C Prepared by Solid-state Synthesis [J]. Journal of Inorganic Materials, 2008, 23(3): 587-591. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||