Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (7): 779-786.DOI: 10.15541/jim20170379
Special Issue: 电催化研究
• Orginal Article • Previous Articles Next Articles
GUO Rui-hua1,2,3, MO Yi-Jie2,3, AN Sheng-Li2,3, ZHANG Jie-Yu1, ZHOU Guo-Zhi1
Received:
2017-08-07
Revised:
2017-11-17
Published:
2018-07-10
Online:
2018-06-19
CLC Number:
GUO Rui-hua, MO Yi-Jie, AN Sheng-Li, ZHANG Jie-Yu, ZHOU Guo-Zhi. Cerium Oxide Hollow Sphere: Controllable Synthesis and Its Effect on Electrocatalytic Performance of Pt-based Catalysts[J]. Journal of Inorganic Materials, 2018, 33(7): 779-786.
Number | Sample | CeO2 additive situation | Weight ratio of RGO to CeO2 |
---|---|---|---|
1# | Pt-CeO2/ RGO | Add single shell CeO2 hollow sphere | RGO:CeO2=1:1 |
2# | Pt-CeO2/ RGO | Add single shell CeO2 hollow sphere | RGO:CeO2=1:2 |
3# | Pt-CeO2/ RGO | Add single shell CeO2 hollow sphere | RGO:CeO2=1:3 |
4# | Pt-CeO2/ RGO | Add double shell CeO2 hollow sphere | RGO:CeO2=1:1 |
5# | Pt-CeO2/ RGO | Add double shell CeO2 hollow sphere | RGO:CeO2=1:2 |
6# | Pt-CeO2/ RGO | Add double shell CeO2 hollow sphere | RGO:CeO2=1:3 |
7# | Pt/ RGO | Not add CeO2 | - |
Table 1 Different conditions of seven groups of catalysts
Number | Sample | CeO2 additive situation | Weight ratio of RGO to CeO2 |
---|---|---|---|
1# | Pt-CeO2/ RGO | Add single shell CeO2 hollow sphere | RGO:CeO2=1:1 |
2# | Pt-CeO2/ RGO | Add single shell CeO2 hollow sphere | RGO:CeO2=1:2 |
3# | Pt-CeO2/ RGO | Add single shell CeO2 hollow sphere | RGO:CeO2=1:3 |
4# | Pt-CeO2/ RGO | Add double shell CeO2 hollow sphere | RGO:CeO2=1:1 |
5# | Pt-CeO2/ RGO | Add double shell CeO2 hollow sphere | RGO:CeO2=1:2 |
6# | Pt-CeO2/ RGO | Add double shell CeO2 hollow sphere | RGO:CeO2=1:3 |
7# | Pt/ RGO | Not add CeO2 | - |
Sample | Pt (0)/eV | Relative ratio/% | Pt (II)/eV | Relative ratio/% |
---|---|---|---|---|
2# | 70.76, 74.07 | 74.73 | 71.46, 74.35 | 25.26 |
5# | 70.90, 74.27 | 81.93 | 71.46, 74.27 | 18.06 |
Table 2 XPS data and the possible chemical states of catalysts
Sample | Pt (0)/eV | Relative ratio/% | Pt (II)/eV | Relative ratio/% |
---|---|---|---|---|
2# | 70.76, 74.07 | 74.73 | 71.46, 74.35 | 25.26 |
5# | 70.90, 74.27 | 81.93 | 71.46, 74.27 | 18.06 |
[1] | JEON M K, WON J Y, LEE K R,et al.Highly active PtRuFe/C catalyst for methanol electro-oxidation.Electrochemistry Communications, 2007, 9(9): 2163-2166. |
[2] | RAHSEPAR M, PAKSHIR M, PIAO Y Z,et al.Synthesis and electrocatalytic performance of high loading active PtRu multiwalled carbon nanotube catalyst for methanol oxidation.Electrochimica Acta, 2012, 71(1): 246-251. |
[3] | KANG S, LIM S, PECK D H,et al. Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells.International Journal of Hydrogen Energy, 2012, 37(5): 4685-4693. |
[4] | FENG L G, ZHANG J, CAI W W,et al. Single passive direct methanol fuel cell supplied with pure methanol.Journal of Power Sources, 2011, 196(5): 2750-2753. |
[5] | WANG ZHAO-MING, WEI XING, PENG WEI,et al. On-line electrochemical transmission infrared spectroscopic study of Pb2+ enhanced C-C bond breaking in the ethanol oxidation reaction.Acta Phys. -Chim. Sin, 2016, 32(6): 1467-1472. |
[6] | JENNINGS P C, POLLET B G, JOHNSTON R L.Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.Physical Chemistry Chemical Physics, 2012, 14(9): 3134-3139. |
[7] | COCHELL T, MANTHIRAM A.Pt@PdxCuy/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.Langmuir, 2012, 28(2): 1579-1587. |
[8] | STASSI A, GATTO I, MONFORTE G,et al. The effect of thermal treatment on structure and surface composition of PtCo electro- catalysts for application in PEMFCs operating under automotive conditions.Journal of Power Sources, 2012, 208(15): 35-45. |
[9] | BLIZNAKOV S T, VUKMIROVIC M B, YANG L,et al. Pt monolayer on electrodeposited Pd nanostructures: advanced cathode catalysts for PEM fuel cells.Journal of the Electrochemical Society, 2012, 159(9): F501-F506. |
[10] | FENG L G, ZHAO X, YANG J,et al. Electrocatalytic activity of Pt/C catalysts for methanol electrooxidation promoted by molybdovanadophosphoric acid.Catalysis Communications, 2011, 14(1): 10-14. |
[11] | LI MIN, LUO YUAN, XU WEI-JIA,et al. DMFC anode catalyst Fe3O4@Pt particles: synthesis and catalytic performance.Journal of Inorganic Materials, 2017, 9(32): 917-921. |
[12] | ZHOU C M, WANG H J, PENG F,et al. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.Langmuir, 2009, 25(13): 7711-7717. |
[13] | TIMPERMAN L, FENG Y J, VOGEL W,et al. Substrate effect on oxygen reduction electrocatalysis.Electrochimica Acta, 2010, 26(1): 7558-7563. |
[14] | DHAVALE V M, KURUNGOT S.Tuning the performance of low-Pt polymer electrolyte membrane fuel cell electrodes derived from Fe2O3@Pt/C core-shell catalyst prepared by anin situ anchoring strategy.The Journal of Physical Chemistry C, 2012, 116(13): 7318-7326. |
[15] | FENG L G, YAN L, CUI Z M,et al. High activity of Pd-WO3/C catalyst as anodic catalyst for direct formic acid fuel cell.Journal of Power Sources, 2011, 196(5): 2469-2474. |
[16] | TSIOUVARAS N, MARTINEZ-HUERTA M V, MOLINER R,et al. CO tolerant PtRu-MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells.Journal of Power Sources, 2009, 186(2): 299-304. |
[17] | ELEZOVIĆ N R, BABIĆ B M, RADMILOVIĆ V R,et al. Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation.Journal of Power Sources, 2008, 175(1): 250-255. |
[18] | BAI Y X, WU J J, XI J Y,et al. Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst.Electrochemistry Communications, 2005, 7(11): 1087-1090. |
[19] | FENG L G, YANG J, HU Y,et al. Electrocatalytic properties of PdCeOx/C anodic catalyst for formic acid electrooxidation.International Journal of Hydrogen Energy, 2012, 37(6): 4812-4818. |
[20] | ZHOU J H, HE J P, WANG T,et al. Synergistic effect of Re2O3 (Re=Sm, Eu and Gd) on Pt/mesoporous carbon catalyst for methanol electro-oxidation.Electrochimica Acta, 2009, 54(11): 3103-3108. |
[21] | SKORODUMOVA N V, BAUDIN M, HERMANSSON K.Surface properties of CeO2 from first principles.Physical Review B, 2004, 69(7): 1-8. |
[22] | SCIBIOH M A, KIM S K, CHO E A,et al. Pt-CeO2/C anode catalyst for direct methanol fuel cells.Applied Catalysis B: Environmental, 2008, 84(3/4): 773-782. |
[23] | ZHOU Y, GAO Y F, LIU Y C,et al. High efficiency Pt-CeO2/ carbon nanotubes hybrid composite as an anode electrocatalyst for direct methanol fuel cells.Journal of Power Sources, 2010, 195(6): 1605-1609. |
[24] | MASUDA T, FUKUMITSU H, FUGANE K,et al. Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt-CeOx nanocomposite electrocatalyst - an in situ electrochemical X-ray absorption fine structure study.The Journal of Physical Chemistry C, 2012, 116(18): 10098-10102. |
[25] | LIN R, CAO C H, ZHANG H Y,et al. Electro-catalytic activity of enhanced CO tolerant cerium-promoted Pt/C catalyst for PEM fuel cell anode.International Journal of Hydrogen Energy, 2012, 37(5): 4648-4656. |
[26] | LIU C W, WEI Y C, WANG K W.Surface condition manipulation and oxygen reduction enhancement of PtAu/C catalysts synergistically modified by CeO2 addition and N2 treatment.The Journal of Physical Chemistry C, 2011, 115(17): 8702-8708. |
[27] | LI J Y, XIONG S L, PAN J.Hydrothermal synthesis and electrochemical properties of urchin-like core-shell copper oxide nanostructures.The Journal of Physical Chemistry C, 2010, 114(21): 9645-9650. |
[28] | DENG D, LEE J Y.Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage.Chemistry of Material, 2008, 20(5): 1841-1846. |
[29] | XU P F, YU R B, REN H,et al. Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres.Chem Sci, 2014, 5(11): 4221-4226. |
[30] | DEIVARAJ T C, CHEN W X, LEE J Y.Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol.Journal of Materials Chemistry, 2003, 13(10): 2555-2560. |
[31] | HUANG M H, JIANG Y Y, JIN C H,et al. Pt-Cu alloy with high density of surface Pt defects for efficient catalysis of breaking C-C bond in ethanol.Electrochimica Acta, 2014, 125(10): 29-37. |
[32] | ZHOU Y, GAO Y F, LIU Y C,et al. High efficiency Pt-CeO2/ carbon nanotubes hybrid composite as an anode electrocatalyst for direct methanol fuel cells.Journal of Power Sources, 2010, 195(6): 1605-1609. |
[33] | YU S P, LIU Q B, YANG W S,et al. Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells.Electrochimica Acta, 2013, 94(1): 245-251. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[5] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[6] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[7] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[8] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[9] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[10] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[11] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[12] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[13] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[14] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[15] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||