Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (12): 1308-1314.DOI: 10.15541/jim20170104
• Orginal Article • Previous Articles Next Articles
DAN Meng1,2, ZHANG Qian2, ZHONG Yun-Qian2, ZHOU Ying1,2
Received:
2017-03-06
Revised:
2017-04-11
Published:
2017-12-20
Online:
2017-11-21
CLC Number:
DAN Meng, ZHANG Qian, ZHONG Yun-Qian, ZHOU Ying. Preparation of MnS with Different Crystal Phases for Photocatalytic H2 Production from H2S[J]. Journal of Inorganic Materials, 2017, 32(12): 1308-1314.
Samples | H2 production/(μmol·g-1·h-1) | |
---|---|---|
Visible light (λ>420 nm) | Full spectrum | |
α-MnS | 4.24 | 877.68 |
γ-MnS | 23.38 | 2272.69 |
Table 1 Photocatalytic H2 production under different light irradiation over two different MnS
Samples | H2 production/(μmol·g-1·h-1) | |
---|---|---|
Visible light (λ>420 nm) | Full spectrum | |
α-MnS | 4.24 | 877.68 |
γ-MnS | 23.38 | 2272.69 |
[1] | FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode.Nature, 1972, 238: 37-38. |
[2] | KUDO A, MISEKI Y.Heterogeneous photocatalyst materials for water splitting.Chem. Soc. Rev., 2009, 38(1): 253-278. |
[3] | CHEN XIAO-BO, SHEN SHAO-HUA, GUO LIE-JIN,et al. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11): 6503. |
[4] | YU SHAN, ZHONG YUN-QIAN, YU BAO-QUAN,et al. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. Physical Chemistry Chemical Physics, 2016, 18(30): 20338-20344. |
[5] | YANG MIN, JIA XIAO-PENG, LI BING-KE D,et al. One-pot synthesis and photocatalytic hydrogen evolution properties of Zn2GeO4 microspheres. Journal of Inorganic Materials, 2017, 32(2): 141-147. |
[6] | GUO DONG-XUE, ZHANG QING-HONG, WANG HONG-ZHI,et al. Preparation of RuO2/ZrO2/TaON composite photocatalyst and Its photocatalytic properties for water splitting hydrogen evolution. Journal of Inorganic Materials, 2015, 30(10): 1025-1030. |
[7] | WEI JIE, LI XUE-DONG, WANG HONG-ZHI,et al Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight.Journal of Inorganic Materials, 2015, 30(9): 925-930. |
[8] | WANG FANG, WEI SHI-QIAN, ZHANG ZHI,et al. Oxygen vacancies as active sites for H2S dissociation on the rutile TiO2110) surface: a first-principles study.Physical Chemistry Chemical Physics, 2016, 18(9): 6706-6712. |
[9] | KAWADE U V, PANMAND R P, SETHI Y A,et al. Environmentally benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Adv., 2014, 4(90): 49295-49302. |
[10] | NAMAN S A, ALIWI S M, AL-EMARA K.Hydrogen production from the splitting of H2S by visible light irradiation of vanadium sulfides dispersion loaded with RuO2.Int. J. Hydrogen Energy, 1986, 11(1): 33-38. |
[11] | Hydrogen Sulfide: Human Health Aspects; Concise International Chemical Assessment Document 53; World Health Organization:Geneva. Document 53; World Health Organization: Geneva. 2003. |
[12] | PIÉPLU A, SAUR O, LAVALLEY J C,et al. Claus catalysis and H2S selective oxidation. Cat. Rev., 1998, 40(4): 409-450. |
[13] | PATIL S S, PATIL D R, APTE S K,et al. Confinement of Ag3PO4 nanoparticles supported by surface plasmon resonance of Ag in glass: efficient nanoscale photocatalyst for solar H2 production from waste H2S. Appl. Catal., B, 2016, 190: 75-84. |
[14] | KAWADE U V, PANMAND R P, SETHI Y A,et al. Environmentally benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Adv., 2014, 4(90): 49295-49302. |
[15] | JANG J S, KIM H G, BORSE P H,et al. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation. Int. J. Hydrogen Energy, 2007, 32(18): 4786-4791. |
[16] | GOEDE O, HEIMBRODT W.Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices.Phys. Status Solidi B, 1988, 146(1): 11-62. |
[17] | FAN DONG-BO, WANG HAO, ZHANG YONG-CAI,et al Preparation of crystalline MnS thin films by chemical bath deposition.Mater. Chem. Phys., 2003, 80(1): 44-47. |
[18] | LOKHANDE C D, ENNAOUI A, PATIL P S, et al. Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films. Thin Solid Films, 1998, 330(2): 70-75. |
[19] | GÜMÜŞ C, ULUTAŞ C, ESEN R,et al Preparation and characterization of crystalline MnS thin films by chemical bath deposition.Thin Solid Films, 2005, 492(1): 1-5. |
[20] | MI LI-WEI, CHEN YUAN-FANG, ZHENG ZHI,et al. Benefical metal ion insertion into dondelion-like MnS with enhanced catalytic performance and genetic morphology. RSC Adv., 2014, 4(37): 19257-19265. |
[21] | DAN MENG, ZHANG QIAN, YU SHAN, et al. Noble-metal-free MnS//n2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl. Catal., B, 2017(2017): 530-539. |
[22] | ZHANG LEI, ZHOU LIANG, WU HAN-BIN,et al. Unusual formation of single-crystal manganese sulfide microboxes Co-mediated by the cubic crystal structure and shape. Angew. Chem. Int. Ed., 2017, 51(29): 7267-7270. |
[23] | TANG YONG-FU, CHEN TENG, GUO WEN-FENG,et al.Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance. J. Power Sources, 2017, 362: 1-9. |
[24] | SOMBUTHAWEE C, BONSALL S B, HUMMEL F A.Phase equilibria in the systems ZnS-MnS, ZnS-CuInS2, and MnS-CuInS2.J. Solid State Chem., 1978, 25(4): 391-399. |
[25] | SKROMME B J, ZHANG Y, SMITH D J, et al. Growth and characterization of pseudomorphic single crystal zinc blende MnS. Appl. Phys. Lett., 1995, 67(18): 2690-2692. |
[26] | BISWAS S, KAR S, CHAUDHURI S.Growth of different morphological features of micro and nanocrystalline manganese sulfide via solvothermal process. J. Cryst. Growth, 2007, 299(1): 94-102. |
[27] | LIU MEI-YING, SHAN NAN-NAN, CHEN LINLIN,et al A mild l-cystine-assisted hydrothermal route to metastable γ-MnS multipods.Appl. Surf. Sci., 2012, 258(20): 7922-7927. |
[28] | ZHANG YONG-CAI, WANG HAO, WANG BO, et al.Low- temperature hydrothermal synthesis of pure metastable γ-manganese sulfide (MnS) crystallites.J. Cryst. Growth, 2002, 243(1): 214-217. |
[29] | ZHANG, YONG-CAI, WANG HAO, WANG BO,et al Hydrothermal synthesis of metastable γ-manganese sulfide crystallites.Opt. Mater., 2003, 23(1): 433-437. |
[30] | WANG ZHONG-LIN.Transmission electron microscopy of shape- controlled nanocrystals and their assemblies.J. Phys. Chem.: B, 2000, 104(6): 1153-1175. |
[31] | LI YUE-XIANG, HU YUAN-FANG, PENG SHAO-QIN,et al Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution.The Journal of Physical Chemistry C, 2009, 113(21): 9352-9358. |
[32] | CAO HUA-QIANG, WANG GUO-ZHI, ZHANG SI-CHUN, et al. Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem., 2006, 45(13): 5103-5108. |
[33] | PANDEY G, SHARMA H K, SRIVASTAVA S K,et al γ-MnS nano and micro architectures: synthesis, characterization and optical properties.Mater. Res. Bull., 2011, 46(11): 1804-1810. |
[34] | KASAHARA A, NUKUMIZU K, HITOKI G,et al. Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A, 2002, 106(29): 6750-6753. |
[35] | 吴晓东, 孙晓君, 魏金枝, 等. MnS光催化剂的制备及其产氢性能. 哈尔滨理工大学学报, 2013, 18(3): 102-105. |
[36] | XIE YI-BING.Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes.Adv. Funct. Mater., 2006, 16(14): 1823-1831. |
[37] | HAGFELDT A, LINDSTRÖM H, SÖDERGREN S,et al.Photoelectrochemical studies of colloidal TiO2 films: the effect of oxygen studied by photocurrent transients. J. Electroanal. Chem., 1995, 381(1-2): 39-46. |
[38] | 曹锡章, 宋天佑, 王杏乔. 无机化学(上册). 北京:高等教育出版社, 1994, 383(1): 3. |
[39] | LI RENG-GUI, ZHANG FU-XIANG, WANG DON-GE,et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun., 2013, 4: 1432. |
[40] | WANG XIANG, LI REN-GUI, XU QIAN,et al. Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions. Acta Physico-Chimica Sinica, 2013, 29(7): 1566-1571. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[3] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[4] | JING Xinxin, CHEN Biqing, ZHAI Jiaxin, YUAN Meiling. Ni-Co-B-RE (Sm, Dy, Tb) Composite Electrodes: Preparation by Chemical Deposition Method and Electrocatalytic Hydrogen Evolution Performance [J]. Journal of Inorganic Materials, 2024, 39(5): 467-476. |
[5] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[6] | HE Qian, TANG Wanlan, HAN Bingkun, WEI Jiayuan, LÜ Wenxuan, TANG Zhaomin. pH Responsive Copper-Doped Mesoporous Silica Nanocatalyst for Enhanced Chemo-Chemodynamic Tumor Therapy [J]. Journal of Inorganic Materials, 2024, 39(1): 90-98. |
[7] | SONG Yunxia, HAN Yinglei, YAN Tao, LUO Min. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl [J]. Journal of Inorganic Materials, 2023, 38(7): 778-784. |
[8] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[9] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[10] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[11] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[12] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[13] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[14] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[15] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||