Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (8): 891-896.DOI: 10.15541/jim20150035
• Orginal Article • Previous Articles
CHEN Ang-Ran1, ZHAO Wei1, CUI Hou-Lei1, ZHI Jian1, HUANG Fu-Qiang1, 2
Received:
2015-01-20
Published:
2015-04-20
Online:
2015-07-21
About author:
CHEN Ang-Ran(1990-), male, candidate of PhD. E-mail: chenangran@student.sic.ac.cn
Supported by:
CLC Number:
CHEN Ang-Ran, ZHAO Wei, CUI Hou-Lei, ZHI Jian, HUANG Fu-Qiang. TiO2 Nanowires Infiltrated with Graphene-decorated Mesoporous TiO2 for Enhanced Dye-sensitized Solar Cell[J]. Journal of Inorganic Materials, 2015, 30(8): 891-896.
Fig. 1 Cross-sectional FESEM images of TNWs (a), cross- sectional (b) and top-sectional (c) FESEM of TNWs/GMT after one cycle infiltration, and cross-sectional FESEM of TNWs/ GMT after 5 cycles infiltration (d)
Fig. 4 Electrochemical impedance spectroscopy and electrical property (a) Nyquist plots of the impedance data of the DSSCs with anodes made of TNWs, TNWs/MT and TNWs/GMT. (b) Mott-Schottky patterns of TNWs/MT and TNWs/GMT
Sample | Voc | Jsc /(mA·cm-2) | Fill factor/% | Efficiency/% | Thickness/μm |
---|---|---|---|---|---|
TNWs | 0.69 | 7.4 | 59 | 3.04 | 2.46 |
TNWs/MT | 0.67 | 16.7 | 53 | 6.00 | 2.57 |
TNWs/GMT | 0.67 | 18.3 | 61 | 7.58 | 2.59 |
Table 1 Solar cell parameters of cells*
Sample | Voc | Jsc /(mA·cm-2) | Fill factor/% | Efficiency/% | Thickness/μm |
---|---|---|---|---|---|
TNWs | 0.69 | 7.4 | 59 | 3.04 | 2.46 |
TNWs/MT | 0.67 | 16.7 | 53 | 6.00 | 2.57 |
TNWs/GMT | 0.67 | 18.3 | 61 | 7.58 | 2.59 |
[1] | OREGAN B, GRÄTZEL M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films.Nature, 1991, 353(6346): 737-740. |
[2] | HAGFELDT A, GRÄTZEL M. Light-induced redox reactions in nanocrystalline systems.Chem. Rev., 1995, 95(1): 49-68. |
[3] | NAZEERUDDIN M K, KAY A, RODICIO I, et al.Conversion of light to electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate) ruthenium(Ii) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO2 electrodes.J. Am. Chem. Soc., 1993, 115(14): 6382-6390. |
[4] | GRÄTZEL M. Recent advances in sensitized mesoscopic solar cells.Accounts Chem. Res., 2009, 42(11): 1788-1798. |
[5] | GRÄTZEL M. Dye-sensitized solar cells.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153. |
[6] | PETER L M.Characterization and modeling of dye-sensitized solar cells.J. Phys. Chem. C, 2007, 111(18): 6601-6612. |
[7] | SODERGREN S, HAGFELDT A, OLSSON J, et al.Theoretical-models for the action spectrum and the current-voltage characteristics of microporous semiconductor-films in photoelectrochemical cells.J. Phys. Chem.-Us., 1994, 98(21): 5552-5556. |
[8] | ZHANG J Y, TIAN H M, TIAN Z P et al. Study on sol-hydrothermal synthesis of TiO2 nanoparticles and their photoelectric properties sensitized by dye.J. Inorg. Mater., 2009, 24(6): 1110-1114. |
[9] | VARGHESE O K, GONG D W, PAULOSE M, et al.Crystallization and high-temperature structural stability of titanium oxide nanotube arrays.J. Mater. Res., 2003, 18(1): 156-165. |
[10] | WANG H, BAI Y, WU Q, et al.Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.Physical Chemistry Chemical Physics : PCCP, 2011, 13(15): 7008-7013. |
[11] | ZHU K, NEALE N R, MIEDANER A, et al., Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays.Nano Letters, 2007, 7(1): 69-74. |
[12] | LUO H M, LIU Z Y, BAI C Y, et al.TiO2 nanotube Based dye-sensitized photoanode.J. Inorg. Mater., 2013, 28(5): 521-526. |
[13] | CHEN W, QIU Y, YANG S.A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells.Physical Chemistry Chemical Physics : PCCP, 2010, 12(32): 9494-9501. |
[14] | HUO K F, WANG H R, ZHANG X M, et al.Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity.Chempluschem, 2012, 77(4): 323-329. |
[15] | LIN J, LIU X, GUO M, et al.A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells.Nanoscale, 2012, 4(16): 5148-5153. |
[16] | QI L, YU H, LEI Z, et al.Dye-sensitized solar cells based on ZnO nanowire array/TiO2 nanoparticle composite photoelectrodes with controllable nanowire aspect ratio.Applied Physics A, 2013, 111(1): 279-284. |
[17] | FAN J, LIU S, YU J.Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films.Journal of Materials Chemistry, 2012, 22(33): 17027-17036. |
[18] | YEN M Y, HSIAO M C, LIAO S H, et al.Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells.Carbon, 2011, 49(11): 3597-3606. |
[19] | ALLEN M J, TUNG V C, KANER R B.Honeycomb carbon: a review of graphene.Chem. Rev., 2010, 110(1): 132-145. |
[20] | XIANG Q, YU J, JARONIEC M.Enhanced photocatalytic H(2)-production activity of graphene-modified titania nanosheets.Nanoscale, 2011, 3(9): 3670-3678. |
[21] | HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide.J. Am. Chem. Soc., 1958, 80(6): 1339. |
[22] | FENG X J, SHANKAR K, VARGHESE O K, et al.Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications.Nano Letters, 2008, 8(11): 3781-3786. |
[23] | CHENG G, AKHTAR M S, YANG O B, et al., Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells,ACS Applied Materials & Interfaces, 2013, 5(14): 6635-6642. |
[24] | GRÄTZEL C, ZAKEERUDDIN S M. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters,Mater Today, 2013, 16(1/2): 11-18. |
[25] | PARK N G, VAN DE LAGEMAAT J, FRANK A J. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells.J. Phys. Chem. B, 2000, 104(38): 8989-8994. |
[26] | KALYANASUNDARAM K, GRÄTZEL M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices.Coordin. Chem. Rev., 1998, 177: 347-414. |
[27] | WOLD A.Photocatalytic properties of TiO2.Chem. Mater., 1993, 5(3): 280-283. |
[28] | YU J, MA T, LIU S.Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel.Physical Chemistry Chemical Physics : PCCP, 2011, 13(8): 3491-3501. |
[29] | FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401-1-3. |
[30] | ZHU C, GUO S, WANG P, et al.One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets.Chemical Communications, 2010, 46(38): 7148-7150. |
[31] | ALEXAKI N, STERGIOPOULOS T, KONTOS A G, et al., Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells,Microporous and Mesoporous Materials, 2009, 124(1/2/3): 52-58. |
[32] | ZHANG R, ELZATAHRY A A, AL-DEYAB S S, et al. Mesoporous titania: from synthesis to application.Nano Today, 2012, 7(4): 344-366. |
[33] | BI H, HUANG F, LIANG J, et al.Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells.Journal of Materials Chemistry, 2011, 21(43): 17366-17370. |
[34] | BI H, SUN S, HUANG F, et al.Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications.Journal of Materials Chemistry, 2012, 22(2): 411-416. |
[35] | ZHI J, DENG S, ZHANG Y, et al.Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials.Journal of Materials Chemistry A, 2013, 1(9): 3171-3176. |
[36] | ZHI J, WANG Y F, DENG S, et al.Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes.Rsc. Adv., 2014, 4(76): 40296-40300. |
[37] | TANG H, PRASAD K, SANJINES R, et al.Electrical and optical-properties of TiO2 anatase thin-films.J. Appl. Phys., 1994, 75(4): 2042-2047. |
[38] | DUAN Y D, FU N Q, LIU Q P, et al.Sn-doped TiO2 photoanode for dye-sensitized solar cells.J. Phys. Chem. C, 2012, 116(16): 8888-8893. |
[39] | SUN S, GAO L, LIU Y. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Applied Physics Letters, 2010, 96(8): 083113-1-3. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[4] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[5] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[6] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[7] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[8] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[9] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[10] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[11] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[12] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[13] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[14] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[15] | LI Hao, TANG Zhihong, ZHUO Shangjun, QIAN Rong. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO [J]. Journal of Inorganic Materials, 2021, 36(12): 1277-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||