Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (9): 947-955.DOI: 10.15541/jim20130632
• Orginal Article • Previous Articles Next Articles
SUN Zhi-Juan, CHEN Xue-Lian, JIANG Chun-Yue
Received:
2013-12-02
Revised:
2014-03-12
Published:
2014-09-17
Online:
2014-08-21
About author:
SUN Zhi-Juan. E-mail: sunzj@zjut.edu.cn
Supported by:
CLC Number:
SUN Zhi-Juan, CHEN Xue-Lian, JIANG Chun-Yue. Preparation of Anti-reflection Coatings with Hollow Silica Nanoparticles by Self-assembly[J]. Journal of Inorganic Materials, 2014, 29(9): 947-955.
Run | Amount of ammonia/mL | Amount of PAA /g | Amount of TEOS /mL |
---|---|---|---|
1 | 4.50 | 0.75 | 3.50 |
2 | 6.75 | 0.75 | 3.50 |
3 | 9.00 | 0.75 | 3.50 |
4 | 6.75 | 0.60 | 1.30 |
5 | 6.75 | 0.80 | 1.75 |
6 | 6.75 | 1.00 | 2.20 |
7 | 6.75 | 0.90 | 6.00 |
8 | 6.75 | 0.90 | 5.00 |
9 | 6.75 | 0.90 | 4.00 |
10 | 6.75 | 0.90 | 3.00 |
11 | 6.75 | 0.90 | 2.00 |
Table 1 Experimental design of the preparation of hollow silica nanoparticles
Run | Amount of ammonia/mL | Amount of PAA /g | Amount of TEOS /mL |
---|---|---|---|
1 | 4.50 | 0.75 | 3.50 |
2 | 6.75 | 0.75 | 3.50 |
3 | 9.00 | 0.75 | 3.50 |
4 | 6.75 | 0.60 | 1.30 |
5 | 6.75 | 0.80 | 1.75 |
6 | 6.75 | 1.00 | 2.20 |
7 | 6.75 | 0.90 | 6.00 |
8 | 6.75 | 0.90 | 5.00 |
9 | 6.75 | 0.90 | 4.00 |
10 | 6.75 | 0.90 | 3.00 |
11 | 6.75 | 0.90 | 2.00 |
Fig. 2 TEM images and particle size distributions of hollow silica nanoparticles with various amount of PAA (a, b) PAA/TEOS=0.60 g/1.30 mL; (c, d) PAA/TEOS=0.80 g/1.75 mL; (e, f) PAA/TEOS=1.00 g/2.20 mL
Fig. 3 TEM images of hollow silica nanoparticles with TEOS amount of 6.00 mL(a), 5.00 mL(b), 4.00 mL(c), 3.00 mL(d) and 2.00 mL(e), and the curve of relation between the amount of TEOS and the void fraction (f)
Fig. 7 SEM images of the single-layer anti-reflection coatings with various deposition cycles (a, b) Coating 1 time; (c, d) Coating 2 times; (e, f) Coating 3 times
Sample | Hollow silica nanoparticles dispersion pH | Thickness of the coatings / nm | Refractive index of the coatings | Optimized wavelength / nm | Maximum transmittance / % |
---|---|---|---|---|---|
1 | 1.5 | 72 | 1.18 | 475 | 95.3 |
2 | 2.5 | 101 | 1.23 | 520 | 98.1 |
3 | 3.0 | 96 | 1.22 | 510 | 97.4 |
4 | 3.5 | 91 | 1.21 | 505 | 96.8 |
5 | 4.5 | 79 | 1.20 | 495 | 96.2 |
Table 2 The specific property parameters of single-layer anti-reflection coatings
Sample | Hollow silica nanoparticles dispersion pH | Thickness of the coatings / nm | Refractive index of the coatings | Optimized wavelength / nm | Maximum transmittance / % |
---|---|---|---|---|---|
1 | 1.5 | 72 | 1.18 | 475 | 95.3 |
2 | 2.5 | 101 | 1.23 | 520 | 98.1 |
3 | 3.0 | 96 | 1.22 | 510 | 97.4 |
4 | 3.5 | 91 | 1.21 | 505 | 96.8 |
5 | 4.5 | 79 | 1.20 | 495 | 96.2 |
[1] | WANG G H. Development of anti- reflection film for LCD. Image Technology, 2008, 1: 14-16. |
[2] | WALSH G. Automobile windscreen rake, spectacle lenses, and effective transmittance. Optometry and Vision Science, 2009, 86(12): 1376-1379. |
[3] | CHEN D G. Anti-reflection (AR) coatings made by Sol-Gel processes: a review. Solar Energy Materials and Solar Cells, 2001, 68(3/4): 313-336. |
[4] | NUBILE P. Analytical design of antireflection coatings for silicon photovoltaic devices. Thin Solid Films, 1999, 342(1/2): 257-261. |
[5] | WANG S D, HUANG F H. Antireflection coatings formed from polyelectrolyte multilayers on PMMA substrate. Surface Engineering, 2011, 27(4): 279-285. |
[6] | ZHANG J C, XIONG L M, FANG M, et al. Wide-angle and broadband graded-refractive-index antireflection coatings. Chinese Physics B, 2013, 22(4): 044201. |
[7] | IBN-ELHAJ M, SCHADT M. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature, 2001, 410(6830): 796-799. |
[8] | CHU J Y, CHIUEH M H, CHEN C T, et al. 17.2% efficiency multicrystalline solar cells by optimizing structure of the MgF2/SiNx double antireflection layer. Journal of Photonics for Energy, 2011, 1(1): 1-9. |
[9] | KORKMAZ S, ELMAS S, EKEM N, et al. Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA). Optics Communications, 2012, 285(9): 2373-2376 |
[10] | PERALES F, HERRERO J M, JAQUE D, et al. Improvement of MgF2 thin coating films for laser applications. Optical Materials, 2007, 29(7): 783-787. |
[11] | WALHEIM S, SCHAFFER E, MLYNEK J, et al. Nanophase- separated polymer films as high-performance antireflection coatings. Science, 1999, 283(5401): 520-522. |
[12] | SUN Z J, LUO Y W. Fabrication of non-collapsed hollow polymeric nanoparticles with shell thickness in the order of ten nanometres and anti-reflection coatings. Soft Matter, 2011, 7(3): 871-875. |
[13] | DU Y, LUNA L E, TAN W S, et al. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates. Acsnano, 2010, 4(7): 4308-4316. |
[14] | ZHANG L B, LI Y, SUN J Q, et al. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infra-red region. Journal of Colloid and Interface Science, 2008, 319(1): 302-308. |
[15] | KOO H Y, YI D K, YOO S J, et al. A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274-277. |
[16] | LIU X M, DU X, HE J H. Hierarchically structured porous films of silica hollow spheres via layer-by-layer assembly and their superhydrophilic and antifogging properties. ChemPhysChem, 2008, 9(2): 305-309. |
[17] | XU L G, HE J H. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir, 2012, 28(19): 7512-7518. |
[18] | WU S H, MOU C Y, LIN H P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862-3875. |
[19] | WAN Y, YU S H. Polyelectrolyte controlled large-scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. The Journal of Physical Chemistry C, 2008, 112(10): 3641-3647. |
[20] | CHEN M, WU L M, ZHOU S X, et al. A method for the fabrication of monodisperse hollow silica spheres. Advanced Materials, 2006, 18(6): 801-806. |
[21] | LEE D, OMOLADE D, COHEN R E, et al. pH-dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films. Chemistry of Materials, 2007, 19(6): 1427-1433. |
[22] | PARK M S, KIM J K. Broad-band antireflection coating at near-infrared wavelengths by a breath figure. Langmuir, 2005, 21(24): 11404-11408. |
[1] | ZHANG Xiangsong, LIU Yetong, WANG Yongying, WU Zirui, LIU Zhenzhong, LI Yi, YANG Juan. Self-assembled Platinum-iridium Alloy Aerogels and Their Efficient Electrocatalytic Ammonia Oxidation Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 511-520. |
[2] | CHAN Siyi, TU Juping, HUANG Ke, SHAO Siwu, YANG Zhiliang, LIU Peng, LIU Jinlong, CHEN Liangxian, WEI Junjun, AN Kang, ZHENG Yuting, LI Chengming. Uniform Growth of Two-inch MPCVD Optical Grade Diamond Film [J]. Journal of Inorganic Materials, 2023, 38(12): 1413-1419. |
[3] | WAN Jiabao, ZHANG Minghui, SU Huaiyu, CAO Zhijun, LIU Xuechao, XIE Jiansheng, WANG Xiangyuan, SHI Yinghui, WANG Liang, LEI Shuijin. Structural, Thermal, and Optical Properties of GeO2-La2O3-TiO2 Glasses [J]. Journal of Inorganic Materials, 2023, 38(10): 1230-1236. |
[4] | ZOU Shun, HE Xiyun, ZENG Xia, QIU Pingsun, LING Liang, SUN Dazhi. Microstructure and Properties of Bi-doped Yttrium Iron Garnet Magneto-optical Ceramics Prepared by Hot-pressing Sintering Process [J]. Journal of Inorganic Materials, 2022, 37(7): 773-779. |
[5] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[6] | LI Huaxin, CHEN Junyong, XIAO Zhou, YUE Xian, YU Xianbo, XIANG Junhui. Research Progress of Biomimetic Self-assembly of Nanomaterials in Morphology and Performance Control [J]. Journal of Inorganic Materials, 2021, 36(7): 695-710. |
[7] | ZHAO Changjiang,MA Chao,LIU Juncheng,LIU Zhigang,CHEN Yan. Sputtering Power on the Microstructure and Properties of MgF2 Thin Films Prepared with Magnetron Sputtering [J]. Journal of Inorganic Materials, 2020, 35(9): 1064-1070. |
[8] | LIN De-Bao, FAN Ling-Cong, DING Mao-Mao, XIE Jian-Jun, LEI Fang, SHI Ying. Optical Transmittance Model Construction for ZnO Transparent Ceramic and Experimental Verification [J]. Journal of Inorganic Materials, 2019, 34(8): 851-856. |
[9] | PENG Xin-Cun, WANG Zhi-Dong, ZENG Meng-Si, LIU Yun, ZOU Ji-Jun, ZHU Zhi-Fu, DENG Wen-Juan. Improvement on Size Uniformity of SiO2 Nanospheres Applied in Si Optical Resonance Nanopillar-arrays [J]. Journal of Inorganic Materials, 2019, 34(7): 734-740. |
[10] | WANG Jing-Ping, CHENG Fang-Yuan, DU Xian-Feng, XU You-Long. Preparation of Al2O3/TiO2 Composite film with High Specific Capacitance by Surface Self-assembly Method [J]. Journal of Inorganic Materials, 2018, 33(6): 617-622. |
[11] | FAN Wen, WU Li-Min. Controllable Preparation of Nano-TiO2 Lens by Silicon Oil Two-step Dehydration Method [J]. Journal of Inorganic Materials, 2018, 33(12): 1337-1342. |
[12] | XU Jia-Yue, LIANG Xiao-Xiao, JIN Min, ZENG Hai-Bo, KIMURA Hideo, HU Hao-Yang, SHAO He-Zhu, SHEN Hui, TIAN Tian, LI Hai-Xia. Growth and Characterization of All-inorganic Perovskite CsPbBr3 Crystal by a Traveling Zone Melting Method [J]. Journal of Inorganic Materials, 2018, 33(11): 1253-1258. |
[13] | LING Yun-Peng, MIN Jia-Hua, LIANG Xiao-Yan, ZHANG Ji-Jun, YANG Liu-Qing, WEN Xu-Liang, ZHANG Ying, LI Ming, LIU Zhao-Xin, WANG Lin-Jun, SHEN Yue. Process Parameters Optimization for Cd0.9Zn0.1Te Crystal Grown by Traveling Heater Metho [J]. Journal of Inorganic Materials, 2017, 32(9): 980-984. |
[14] | YUAN Kang, LIAO Qi-Long, WANG Fu, DAI Yun-Ya, HUANG Jin-Shan. Effects of Sintering Aids (Y3+, La3+ and Mg2+) on the Optical Transmittance of Translucent Alumina Ceramic [J]. Journal of Inorganic Materials, 2017, 32(9): 1004-1008. |
[15] | WANG Hong-Yan, ZHANG Hao, JIANG Hong, WANG Guo-Qing, XIONG Chun-Rong. Preparation of Coating Glass with High Visible Transmittance and High UV Cut-off [J]. Journal of Inorganic Materials, 2017, 32(7): 758-764. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||