[1] Pena M A, FierroJ L G. Chemical structures and performance of perovskite oxides. Chem. Rev., 2001, 101: 1981–2017.[2] Miyauchi M, Nakajima A, Fujishima A, et al. Photoinduced surface reactions on TiO2 and SrTiO3 films: photocatalytic oxidation and photoinduced hydrophilicity. Chem. Mater., 2000, 12(1): 3–5.[3] Irie H, Maruyama Y, Hashimoto K. Ag+- and Pb2+-doped SrTiO3 photocatalysts. a correlation between band structure and photocatalytic activity. J. Phys. Chem.C, 2007, 111(4): 1847–1852.[4] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B, 2002, 106(19): 5029–5034.[5] Xie T H,Sun X Y, Lin J. Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)-O-Fe(II) formed in Fe-doped SrTiO3. J. Phys. Chem. C, 2008, 112(26): 9753–9759.[6] Sun X Y, LinJ. Synergetic effects of thermal and photo-catalysis in purification of dye water over SrTi1-xMnxO3 solid solutions. J. Phys. Chem. C, 2009, 113(12): 4970–4975. [7] Irie H,Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B, 2003, 107(23): 5483–5486.[8] Irie H, Miura S, KamiyaK, et al. Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem. Phys. Lett. ,2008, 457(1/2/3): 202–205. [9] Yu H G, Irie H,Hashimoto K. Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. J. Am. Chem. Soc., 2010, 132(20): 6898–6899.[10] Qiu X Q, Miyauchi M, Yu H G, et al. Visible-light-driven Cu(II)- (Sr1?yNay)(Ti1?xMox)O3 photocatalysts based on conduction band control and surface ion modification. J. Am. Chem. Soc., 2010, 132(43): 15259–15267.[11] Qiu X Q, Miyauchi M, Sunada K, et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano, 2012, 6(2): 1609–1618.[12] Wei X, Xu G, Ren Z H, et al. Synthesis and characterization of mesoporous SrTiO3 spheres via a poly vinyl alcohol-assisted hydrothermal route. J. Am. Ceram. Soc., 2008, 91(1): 299–302.[13] Lei Jian-Heng, Preparation of high- purity and superfine SrTiO3, Inorganic Chemicals Industry, 1990, 1: 11–13.[14] Xin Gang,Guo Wei,Ma Ting-Li. Study of SrTiO3 prepared by molten salt synthesis process for water splitting. Journal of Dalian University of Technology, 2011, 51(1): 20–24. [15] Gao Chun-Mei, Liu Bo, Weng Jing-Jing, et al.Synthesis of Bi2WO6 by a molten salt method. Rare Metal Materials and Engineering, 2010, 39: 405.[16] Irie H, Kamiya K, Shibanuma T, et al. Visible light-sensitive Cu(II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses. J. Phys. Chem. C, 2009, 113(24): 10761–10766.[17] Filho N L D. Adsorption of Cu(II) and Co(II) complexes on a silica gel surface chemically modified with 2-mercaptoimidazole. Microchim. Acta, 1999, 130(4): 233–240.[18] Ohko Y, Hashimoto K, Fujishima A. Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J. Phys. Chem. A, 1997, 101(43): 8057–8062.[19] Nosaka Y, Takahashi S,Mitani Y, et al. Reaction mechanism of visible-light responsive Cu(II)-grafted Mo-doped SrTiO3 photocatalyst studied by means of ESR spectroscopy and chemiluminescence photometry. Appl. Cata. B, 2012, 111–112: 636–640. |