Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (7): 817-825.DOI: 10.15541/jim20250060
• RESEARCH ARTICLE • Previous Articles Next Articles
WEI Zhifan(), CHEN Guoqing(
), ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong
Received:
2025-02-17
Revised:
2025-03-20
Published:
2025-07-20
Online:
2025-03-25
Contact:
CHEN Guoqing, professor. E-mail: gqchen@dlut.edu.cnAbout author:
WEI Zhifan (1993-), male, PhD. E-mail: 424380067@qq.com
Supported by:
CLC Number:
WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure[J]. Journal of Inorganic Materials, 2025, 40(7): 817-825.
Fig. 3 (a) Microstructure and (b) partial enlarged microstructure of ZrB2-HfSi2 ceramic; (c) EDS results of ZrB2-HfSi2 ceramic; (d) Gibbs free energy of the reaction (6)
Fig. 4 EBSD analysis diagrams of ZrB2-HfSi2 ceramic with core-rim structure (a) Core-rim structure microstructure; (b) Phase distribution of core-rim structure; (c) IPF of core-rim structure; (d) Orientation angle difference of interface position
Fig. 5 (a) STEM image and element distribution of ZrB2-HfSi2 ceramic; (b) Microstructure at the interface of core-rim structure and SAED patterns; (c) HRTEM images of the selected interface position in Fig. 5(b)
Crystalline plane | Plane spacing measured/ theoretical value | Crystalline plane | Plane spacing measured/ theoretical value | Mismatch ratio measured/theoretical value | Interface |
---|---|---|---|---|---|
(1¯10¯1)ZrB2 | 0.213/0.216 nm | (1¯10¯1)(Zr,Hf)B2 | 0.216/0.215 nm | 1.4%/0.4% | Common lattice interface |
(01¯1¯1)ZrB2 | 0.209/0.216 nm | (01¯1¯1)(Zr,Hf)B2 | 0.213/0.215 nm | 1.9%/0.4% | Common lattice interface |
(01¯11)(Zr,Hf)B2 | 0.214/0.215 nm | (0¯20)(Zr,Hf)Si2 | 0.730/0.734 nm | 228.5%/243.4% | Noncommon lattice interface |
(¯1102)(Zr,Hf)B2 | 0.146/0.148 nm | (1¯1¯1)(Zr,Hf)Si2 | 0.260/0.258 nm | 78.1%/74.3% | Noncommon lattice interface |
Table 1 Measured and theoretical values of the interplanar spacing and misfit ratio
Crystalline plane | Plane spacing measured/ theoretical value | Crystalline plane | Plane spacing measured/ theoretical value | Mismatch ratio measured/theoretical value | Interface |
---|---|---|---|---|---|
(1¯10¯1)ZrB2 | 0.213/0.216 nm | (1¯10¯1)(Zr,Hf)B2 | 0.216/0.215 nm | 1.4%/0.4% | Common lattice interface |
(01¯1¯1)ZrB2 | 0.209/0.216 nm | (01¯1¯1)(Zr,Hf)B2 | 0.213/0.215 nm | 1.9%/0.4% | Common lattice interface |
(01¯11)(Zr,Hf)B2 | 0.214/0.215 nm | (0¯20)(Zr,Hf)Si2 | 0.730/0.734 nm | 228.5%/243.4% | Noncommon lattice interface |
(¯1102)(Zr,Hf)B2 | 0.146/0.148 nm | (1¯1¯1)(Zr,Hf)Si2 | 0.260/0.258 nm | 78.1%/74.3% | Noncommon lattice interface |
Fig. 6 (a) Microstructure at the interface of (Zr,Hf)Si2/ (Zr,Hf)B2 and SAED patterns; (b) HRTEM images of the selected interface position in Fig. 6(a)
Fig. 7 Formation mechanism diagram of core-rim structure interface in ZrB2-HfSi2 During the initial stage, the surface of ZrB2 melts, and Hf partially dissolves in the transient liquid phase to form a core. During the middle stage, Hf solute diffuses through the transient liquid phase to the surface of the unmelted ZrB2 nucleus, and then precipitates to form a high Hf solubility (Zr,Hf)B2 peripheral layer. During the later stage, the remaining Zr-rich transient liquid phase precipitates to form (Zr,Hf)Si2 phase, and finally forms the hierarchical relationship of ZrB2-(Zr,Hf)B2-(Zr,Hf)Si2.
Fig. 9 (a) Load-displacement curves of ZrB2, (Zr,Hf)B2 and (Zr,Hf)Si2 in nano indentation experiment; (b) Hardnesses of ZrB2, (Zr,Hf)B2 and (Zr,Hf)Si2 in the microstructures
Fig. 10 (a) Fracture microstructure of ZrB2-HfSi2 ceramics; (b) Cleavage platform of core-rim structure; (c) Enlarged drawing of fracture and (d) corresponding EDS element distributions
[1] | PARTHASARATHY T A, PETRY M D, CINIBULK M K, et al. Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions. Journal of the American Ceramic Society, 2013, 96(3): 907. |
[2] | FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: materials for extreme environments. Scripta Materialia, 2017, 129: 94. |
[3] | FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 2007, 90(5): 1347. |
[4] | MONTEVERDE F, BELLOSI A, GUICCIARDI S. Processing and properties of zirconium diboride-based composites. Journal of the European Ceramic Society, 2002, 22(3): 279. |
[5] | GOLLA B R, MUKHOPADHYAY A, BASU B, et al. Review on ultra-high temperature boride ceramics. Progress in Materials Science, 2020, 111: 100651. |
[6] | KHANRA A K, GODKHINDI M M. Effect of Ni additives on pressureless sintering of SHS ZrB2. Advances in Applied Ceramics, 2005, 104(6): 273. |
[7] | WANG H, CHEN D, WANG C A, et al. Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. International Journal of Refractory Metals and Hard Materials, 2009, 27(6): 1024. |
[8] | GUO S Q. Densification of ZrB2-based composites and their mechanical and physical properties: a review. Journal of the European Ceramic Society, 2009, 29(6): 995. |
[9] | GUO S. Densification, microstructure, elastic and mechanical properties of reactive hot-pressed ZrB2-ZrC-Zr cermets. Journal of the European Ceramic Society, 2014, 34(3): 621. |
[10] | MISHRA S K, PATHAK L C. Effect of carbon and titanium carbide on sintering behaviour of zirconium diboride. Journal of Alloys and Compounds, 2008, 465(1/2): 547. |
[11] | REZAIE A, FAHRENHOLTZ W G, HILMAS G E. Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2-SiC. Journal of Materials Science, 2007, 42(8): 2735. |
[12] | SHA J J, LI J, WANG S H, et al. Toughening effect of short carbon fibers in the ZrB2-ZrSi2 ceramic composites. Materials and Design, 2015, 75: 160. |
[13] | ASL M S, NAYEBI B, AHMADI Z, et al. Effects of carbon additives on the properties of ZrB2-based composites: a review. Ceramics International, 2018, 44(7): 7334. |
[14] | ASL M S, FARAHBAKHSH I, NAYEBI B. Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing. Ceramics International, 2016, 42(1): 1950. |
[15] | MONTEVERDE F, BELLOSI A. Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides- matrix ceramics. Journal of Materials Research, 2004, 19(12): 3576. |
[16] | MONTEVERDE F, BELLOSI A. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scripta Materialia, 2002, 46(3): 223. |
[17] | MONTEVERDE F, BELLOSI A. Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Advanced Engineering Materials, 2003, 5(7): 508. |
[18] | SILVESTRONI L, SCITI D. Densification of ZrB2-TaSi2 and HfB2-TaSi2 ultra-high-temperature ceramic composites: densification of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites. Journal of the American Ceramic Society, 2011, 94(6): 1920. |
[19] | SILVESTRONI L, KLEEBE H J, LAUTERBACH S, et al. Transmission electron microscopy on Zr- and Hf-borides with MoSi2 addition: densification mechanisms. Journal of Materials Research, 2010, 25(5): 828. |
[20] | SCITI D, SILVESTRONI L, CELOTTI G, et al. Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites. Journal of the American Ceramic Society, 2008, 91(10): 3285. |
[21] | LAVRENKO V O, PANASYUK A D, GRIGOREV O M, et al. High-temperature (to 1600 ℃) oxidation of ZrB2-MoSi2 ceramics in air. Powder Metallurgy and Metal Ceramics, 2012, 51(1): 102. |
[22] | MUSA C, LICHERI R, ORRÙ R, et al. Synthesis, sintering, and oxidative behavior of HfB2-HfSi2 ceramics. Industrial and Engineering Chemistry Research, 2014, 53(22): 9101. |
[23] | SAJDAK M, KORNAUS K, ZIENTARA D, et al. Processing, microstructure and mechanical properties of TiB2-MoSi2-C ceramics. Crystals, 2024, 14(3): 212. |
[24] | GROHSMEYER R J, SILVESTRONI L, HILMAS G E, et al. ZrB2-MoSi2 ceramics: a comprehensive overview of microstructure and properties relationships. Part I: processing and microstructure. Journal of the European Ceramic Society, 2019, 39(6): 1939. |
[25] | NIIHARA K. A fracture mechanics analysis of indentation- induced Palmqvist crack in ceramics. Journal of Materials Science Letters, 1983, 2(5): 221. |
[26] | ZU Y, CHEN G, FU X, et al. Effects of liquid phases on densification of TiO2-doped Al2O3-ZrO2 composite ceramics. Ceramics International, 2014, 40(3): 3989. |
[27] | MELÉNDEZ-MARTÍNEZ J J, DOMÍNGUEZ-RODRÍGUEZ A, MONTEVERDE F, et al. Characterisation and high temperature mechanical properties of zirconium boride-based materials. Journal of the European Ceramic Society, 2002, 22(14/15): 2543. |
[28] | SUN X, HAN W, HU P, et al. Microstructure and mechanical properties of ZrB2-Nb composite. International Journal of Refractory Metals and Hard Materials, 2010, 28(3): 472. |
[29] | GUO S Q, KAGAWA Y, NISHIMURA T. Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of the European Ceramic Society, 2009, 29(4): 787. |
[30] | ORLOVSKAYA N, STADELMANN R, LUGOVY M, et al. Mechanical properties of ZrB2-SiC ceramic composites: room temperature instantaneous behaviour. Advances in Applied Ceramics, 2013, 112(1): 9. |
[31] | LI W, ZHANG X, HONG C, et al. Microstructure and mechanical properties of zirconia-toughened ZrB2-MoSi2 composites prepared by hot-pressing. Scripta Materialia, 2009, 60(2): 100. |
[32] | ASL M S, KAKROUDI M G, NOORI S. Hardness and toughness of hot pressed ZrB2-SiC composites consolidated under relatively low pressure. Journal of Alloys and Compounds, 2015, 619: 481. |
[33] | GUI K, HU P, HONG W, et al. Microstructure, mechanical properties and thermal shock resistance of ZrB2-SiC-Cfcomposite with inhibited degradation of carbon fibers. Journal of Alloys and Compounds, 2017, 706: 16. |
[34] | YANG Y, QIAN Y H, XU J J, et al. Effects of TaSi2 addition on room temperature mechanical properties of ZrB2-20SiC composites. Ceramics International, 2018, 44(14): 16150. |
[35] | MONTEVERDE F. Hot pressing of hafnium diboride aided by different sinter additives. Journal of Materials Science, 2008, 43(3): 1002. |
[36] | LANG Q, LI N, LIU X, et al. Regulating Mg/Fe interfacial compound formation by in-situ alloying with Gd and Y. Journal of Magnesium and Alloys, 2024, 12(12): 5179. |
[37] | SONG G, LI T, ZHANG Z, et al. Investigation of unequal thickness Mg/steel butt-welded plate by hybrid laser-tungsten inert gas welding with a Ni interlayer. Journal of Manufacturing Processes, 2017, 30: 299. |
[38] | HU D L, GU H, ZOU J, et al. Core-rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2-SiC-MC ceramics (M=Nb, Hf, Ta, W). Journal of Materiomics, 2021, 7(1): 69. |
[39] | ZHU S, LI J, XING J, et al. Cathodoluminescence characteristics of a novel core-rim structure in Bi-doped (Sr,Ba)TiO3 ceramics. Ceramics International, 2019, 45(6): 8027. |
[40] | ENGSTRÖM I, LÖNNBERG B. Thermal expansion studies of the group IV-VII transition-metal disilicides. Journal of Applied Physics, 1988, 63(9): 4476. |
[41] | KEIHN F G, KEPLIN E J. High-temperature thermal expansion of certain group IV and group V diborides. Journal of the American Ceramic Society, 1967, 50(2): 81. |
[1] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[2] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[3] | HE Zongbei, CHEN Fang, LIU Dianguang, LI Tongye, ZENG Qiang. Sintering Behavior of Simulating Core FCM Fuel via Hot Oscillatory Pressing [J]. Journal of Inorganic Materials, 2024, 39(5): 501-508. |
[4] | YANG Yong, GUO Xiaotian, TANG Jie, CHANG Haotian, HUANG Zhengren, HU Xiulan. Research Progress and Prospects of Non-oxide Ceramic in Stereolithography Additive Manufacturing [J]. Journal of Inorganic Materials, 2022, 37(3): 267-277. |
[5] | Zhui WANG, Jian-Jun HAN, Jian-Qiang LI, Xiao-Yu LI, Jiang-Tao LI, Gang HE, Jun XIE. Plastic Sintering Behavior of Large-sized La2O3-TiO2-ZrO2 Amorphous Bulk [J]. Journal of Inorganic Materials, 2019, 34(4): 433-438. |
[6] | NIE Lan-Jian, GU Zhen-An, WANG Yu-Fen, XIANG Zai-Kui, ZHANG Chen-Yang, RAO Chuan-Dong. SiO2 Soot Body at Vacuum Sintering Process: Densification and Transparency Mechanism [J]. Journal of Inorganic Materials, 2019, 34(10): 1060-1066. |
[7] | GUO Sheng-Qiang, WANG Hao, TU Bing-Tian, WANG Bin, XU Peng-Yu, WANG Wei-Min, FU Zheng-Yi. Fabrication and Property of Fine-grained MgO·1.44Al2O3 Spinel Transparent Ceramic [J]. Journal of Inorganic Materials, 2019, 34(10): 1067-1071. |
[8] | LI Ren-Yi, LI Xiao-Yu, LI Jian-Qiang, ZHAO Jian-Ling, MA Xiao-Guang, HE Gang, LI Jiang-Tao. Large-sized La2O3-TiO2-SiO2 Amorphous Oxide Fabricated by Hot Press Sintering [J]. Journal of Inorganic Materials, 2017, 32(8): 851-856. |
[9] | YUAN Qin, SONG Yong-Cai. Effects of Al and O Content on Transformation from SiAlCO to Si(Al)C Fibers after High Temperature Treatment [J]. Journal of Inorganic Materials, 2016, 31(4): 393-400. |
[10] | YUAN Qin, SONG Yong-Cai. Effect of SiCxOy Decomposition on Densification of SiCO(Al) Fibers during Sintering Process [J]. Journal of Inorganic Materials, 2016, 31(12): 1320-1326. |
[11] | LI Hai-Tao, LI Qian, YAN Yan-Fu, XU Rong-Hui. Effect of ZnO-doping on Sinterability and Microwave Dielectric Property of Ca0.25(Li0.43Sm0.57)0.75TiO3 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(4): 369-373. |
[12] | LI Yan, CUI Hong, ZHANG Hua-Kun, JI A-Lin, JIE Yu-Jie. Densification Behavior of Thermal Gradient CVI of Large-scale C/C Composites [J]. Journal of Inorganic Materials, 2015, 30(2): 153-158. |
[13] | DU Xian-Wu, ZHANG Zhi-Xiao, WANG Wei-Min, FU Zheng-Yi, WANG Hao. Effect of Particle Size on Densification and Mechanical Properties of Hot-pressed Boron Carbide [J]. Journal of Inorganic Materials, 2013, 28(10): 1062-1066. |
[14] | ZHANG Guo-Jun, ZOU Ji, NI De-Wei, LIU Hai-Tao, KAN Yan-Mei. Boride Ceramics: Densification, Microstructure Tailoring and Properties Improvement [J]. Journal of Inorganic Materials, 2012, 27(3): 225-233. |
[15] | LI Jian-Li, SU Zhe-An, ZHANG Ming-Yu, YANG Xin, HUANG Qi-Zhong. Mechanism of Densification of C/C Composites Fabricated with High Density Preform [J]. Journal of Inorganic Materials, 2011, 26(7): 711-714. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||