Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (5): 527-533.DOI: 10.15541/jim20210317
Special Issue: 【材料计算】计算材料(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
YUAN Gang1, MA Xinguo1,2(), HE Hua2, DENG Shuiquan3, DUAN Wangyang1, CHENG Zhengwang1, ZOU Wei1
Received:
2021-05-18
Revised:
2021-07-06
Published:
2022-05-20
Online:
2021-11-01
Contact:
MA Xinguo, professor. E-mail: maxg2013@sohu.com
About author:
YUAN Gang (1998-), male, Master candidate. E-mail: marvinyuan@163.com
Supported by:
CLC Number:
YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4[J]. Journal of Inorganic Materials, 2022, 37(5): 527-533.
Strain/% | Eg/eV | me*/m0 | mh*/m0 | u |
---|---|---|---|---|
-4 | 2.68 | 0.676 | 0.626 | 0.325 |
-2 | 2.26 | 0.539 | 0.625 | 0.289 |
0 | 1.79 | 0.446 | 0.615 | 0.258 |
2 | 1.35 | 0.390 | 0.579 | 0.233 |
4 | 1.01 | 0.279 | 0.534 | 0.183 |
Table 1 Band gap, effective mass and reduced mass of monolayer MoSi2N4 under different plane strains
Strain/% | Eg/eV | me*/m0 | mh*/m0 | u |
---|---|---|---|---|
-4 | 2.68 | 0.676 | 0.626 | 0.325 |
-2 | 2.26 | 0.539 | 0.625 | 0.289 |
0 | 1.79 | 0.446 | 0.615 | 0.258 |
2 | 1.35 | 0.390 | 0.579 | 0.233 |
4 | 1.01 | 0.279 | 0.534 | 0.183 |
[1] | GEIM A K, NOVOSELOV K S. The rise of graphene. Nature Materials, 2007,6(3):183-191. |
[2] | XIA F N, WANG H, XIAO D, et al.. Two-dimensional material nanophotonics. Nature Photonics, 2014,8(12):899-907. |
[3] | OOSTINGA J B, HEERSCHE H B, LIU X L, et al.. Gate-induced insulating state in bilayer graphene devices. Nature Materials, 2008,7(2):151-157. |
[4] | SEOL J H, JO I, MOORE A L, et al.. Two-dimensional phonon transport in supported graphene. Science, 2010,328(5975):213-216. |
[5] | LI Y G, WANG H L, XIE L M, et al.. MoS2 nanoparticles grown on graphene: an advanced catalyst for hydrogen evolution-reaction. Journal of the American Chemical Society, 2011,133(19):7296-7299. |
[6] | BERNARDI M, PALUMMO M, GROSMAN J C. Extraordinarysunlight absorption and one nanometer thick photovoltaics using two- dimensional monolayer materials. Nano Letters, 2013,13(8):3664-3670. |
[7] | PERKINS F K, FRIEDMAN A L, COBAS E, et al.. Chemical vapor sensing with monolayer MoS2. Nano Letters, 2013,13(2):668-673. |
[8] | PATIL S, HARIE A, SATHAYE S, et al.. Development of a novel method to grow mono/few-layered MoS2 films and MoS2-graphene hybrid films for supercapacitor applications. CrystEngComm, 2014,16(47):10845-10855. |
[9] | 谢颖. 二硫化钼缺陷能带调制与室温中远红外光电探测性能研究. 济南: 山东大学晶体材料研究所博士学位论文, 2020. |
[10] | HONG Y L, LIU Z B, WANG L, et al.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020,369(6504):670-674. |
[11] | CAI Y Q, ZHANG G, ZHANG Y W. Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. Journal of the American Chemical Society, 2014,136(17):6269-6275. |
[12] | BAFEKRY A, FARAHJ M, HOAT D M, , et al. MoSi2N4 sing- lelayer: a novel two-dimensional material with outstanding mechanical. thermal, electronic, optical, photocatalytic properties. Journal of Physics D: Applied Physics, 2021, 54(15): 155303-1-8. |
[13] | LI Q F, ZHOU W X, WAN X G, et al. Strain effects on monolayer MoSi2N4: ideal strength. Strain effects on monolayer MoSi2N4: ideal strength and failure mechanism. Physica E, 2021, 131: 114753-1-6. |
[14] | YU J H, ZHOU J, WAN X G, , et al. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New Journal of Physics. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New Journal of Physics, 2021, 23: 033005-1-8. |
[15] | ZHONG H, XIONG W Q, LÜ P F, , et al. Strain induced semiconductor to metal transition in MA2Z4 bilayers. Physical Review B. Strain induced semiconductor to metal transition in MA2Z4 bilayers. Physical Review B, 2021, 103(8): 085124-1-7. |
[16] | CAO L M, ZHOU G H, WANG Q Q, et al. Two-dimensional van der waals electrical contact to monolayer MoSi2N4. Applied Physics Letters Two-dimensional van der waals electrical contact to monolayer MoSi2N4. Applied Physics Letters, 2021, 118: 013106-1-6. |
[17] | GUO S D, ZHU Y T, MU W Q, et al. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4. (M = Mo and W). Computational Materials Science, 2021,188: 110223-1-8. |
[18] | MORTAZAVI B, JAVVAJI B, SHOJAEI F, et al. Exceptional piezoelectricity. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy, 2021, 82: 105716-1-13. |
[19] | HUI Y Y, LIU X F, JIE W, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013,7(8):7126-7131. |
[20] | TSOUKLERI G, PARTHENIOS J, PAPAGELIS K, et al.. Subjecting a gr-aphene monolayer to tension and compression. Small, 2010,5(21):2397-2402. |
[21] | PENG Z W, CHEN X L, FAN Y L, et al.. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Science & Applications, 2020,9:190-215. |
[22] | VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990,41(11):7892-7895. |
[23] | TKATCHENKO A, DISTASIO R A, CAR R, , et al. Accurate. Accurate and efficient method for many-body van der waals interactions. Physical Review Letters, 2012, 108(23): 236402-1-5. |
[24] | ORTMANN F, BECHSTEDT F, SCHMIDT W G, et al.. Semiempirical van der waals correction to the density functional description of solids and molecular structures. Physical Review B, 2006,73(20):205101. |
[25] | SEGALL M D, LINDAN P, PROBERT M J, et al.. First principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002,14(11):2717-2744. |
[26] | DONG L, NAMBURU R R, O’REGAN T P, et al. Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. Journal of Materials Science, 2014,49(19):6762-6771. |
[27] | LI C, FAN B W, LI W Y. Bandgap engineering of monolayer MoS2 under strain: a DFT study. Journal of the Korean Physical Society, 2015,66(11):1789-1793. |
[28] | MIAO Y P, MA F, HUANG Y H, et al.. Strain effects on electronic states and lattice vibration of monolayer MoS2. Physica E: Low-dimensional Systems and Nanostructures, 2015,71:1-6. |
[29] | WU M S, XU B, LIU G, , et al. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102-1-5. |
[30] | LIN Q M, CUI J G, YAN X, et al.. First-principles study on electronic structure and optical properties of single point defect graphene oxide. Journal of Inorganic Materials, 2020,35(10):1117-1122. |
[31] | YU Z Q, ZHANG C H, LI S D, et al. Electronic structures and optoelectronic properties of C/Ge-doped silicon nanotubes. Journal of Inorganic Materials, 2015,30(3):233-239. |
[32] | LI J, LIU T Y, YAO S A, et al.. First principles study on the property of O vacancy in LuPO4 crystal. Journal of Inorganic Materials, 2019,34(8):879-884. |
[33] | 沈学础. 半导体光谱和光学性质. 北京: 科学出版社, 2002: 1-32. |
[34] | 洪艺伦. 新型二维层状过渡金属硅氮化合物的制备与物性研究: 合肥: 中国科学技术大学博士学位论文, 2020. |
[1] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[2] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[3] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[4] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[5] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[6] | HE Huikai, YANG Rui, XIA Jian, WANG Tingze, DONG Dequan, MIAO Xiangshui. High-uniformity Memristor Arrays Based on Two-dimensional MoTe2 for Neuromorphic Computing [J]. Journal of Inorganic Materials, 2022, 37(7): 795-801. |
[7] | SUN Lian, GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui. Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2022, 37(7): 697-709. |
[8] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[9] | LEI Weiyan, WANG Yue, WU Shiran, SHI Dongxin, SHEN Yi, LI Fengfeng. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields [J]. Journal of Inorganic Materials, 2022, 37(11): 1181-1191. |
[10] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[11] | YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects [J]. Journal of Inorganic Materials, 2021, 36(3): 269-276. |
[12] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[13] | YANG Liuxin,LUO Wenhua,WANG Changan,XU Chen. Novel Inorganic Two-dimensional Materials for Gas Separation Membranes [J]. Journal of Inorganic Materials, 2020, 35(9): 959-971. |
[14] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
[15] | ZHENG Yun,CHEN Yilin,GAO Bifen,LIN Bizhou. Progress on Phosphorene for Photocatalytic Water Splitting [J]. Journal of Inorganic Materials, 2020, 35(6): 647-653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||