Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (12): 1365-1370.DOI: 10.15541/jim20220162
Special Issue: 【信息功能】纪念殷之文先生诞辰105周年虚拟学术专辑
LIU Dingwei1,2(), ZENG Jiangtao1, ZHENG Liaoying1, MAN Zhenyong1, RUAN Xuezheng1, SHI Xue1, LI Guorong1(
)
Received:
2022-03-22
Revised:
2022-07-06
Published:
2022-12-20
Online:
2022-08-26
Contact:
LI Guorong, professor. E-mail: grli@mail.sic.ac.cnAbout author:
LIU Dingwei (1998-), male, Master candidate. E-mail: liudingwei@student.sic.ac.cn
Supported by:
CLC Number:
LIU Dingwei, ZENG Jiangtao, ZHENG Liaoying, MAN Zhenyong, RUAN Xuezheng, SHI Xue, LI Guorong. High Piezoelectric Property and Low Electric Field-strain Hysteresis of BiAlO3-doped PZT Ceramics[J]. Journal of Inorganic Materials, 2022, 37(12): 1365-1370.
Fig. 3 Temperature dependent dielectric constant (εr) and dielectric loss (tanδ) of (1-x)PSZT-xBA-0.2Mn (x=0.75%, 1.25%, 1.75%, and 2.25%, in mol fraction) at different frequencies
Fig. 4 Ferroelectric properties of the (1-x)PSZT-xBA-0.2Mn ceramics (x=0.50%, 0.75%, 1.00%, 1.25%, 1.50%, 1.75%, 2.00%, and 2.25%, in mol fraction) (a) Polarization-electric field (P-E) hysteresis loops; (b) Current-electric field (I-E) loops; (c) Strain-electric field (S-E) loops (40kV/cm, 10Hz)
(1-x)PSZT-xBA-0.2Mn/ (%, in mol fraction) | Average strain size/μm | d33/(pC·N-1) | kp | Qm | TC/℃ | ε | tanδ/% | H/% | |
---|---|---|---|---|---|---|---|---|---|
0.50 | 1.6 | 333 | 0.68 | 992 | 329 | 1290 | 0.22 | 380 | 10 |
0.75 | 1.9 | 367 | 0.69 | 1131 | 324 | 1300 | 0.27 | 398 | 8 |
1.00 | 2.5 | 383 | 0.70 | 827 | 318 | 1293 | 0.32 | 407 | 3 |
1.25 | 3.0 | 402 | 0.73 | 853 | 316 | 1420 | 0.30 | 540 | 12 |
1.50 | 4.5 | 460 | 0.72 | 445 | 311 | 1416 | 0.32 | 538 | 12 |
1.75 | 6.3 | 504 | 0.71 | 281 | 312 | 1470 | 0.27 | 699 | 15 |
2.00 | 6.7 | 532 | 0.73 | 130 | 310 | 1690 | 0.66 | 638 | 13 |
2.25 | 6.2 | 501 | 0.69 | 113 | 312 | 1669 | 1.01 | 710 | 17 |
Table 1 Performance parameters of different component ceramics
(1-x)PSZT-xBA-0.2Mn/ (%, in mol fraction) | Average strain size/μm | d33/(pC·N-1) | kp | Qm | TC/℃ | ε | tanδ/% | H/% | |
---|---|---|---|---|---|---|---|---|---|
0.50 | 1.6 | 333 | 0.68 | 992 | 329 | 1290 | 0.22 | 380 | 10 |
0.75 | 1.9 | 367 | 0.69 | 1131 | 324 | 1300 | 0.27 | 398 | 8 |
1.00 | 2.5 | 383 | 0.70 | 827 | 318 | 1293 | 0.32 | 407 | 3 |
1.25 | 3.0 | 402 | 0.73 | 853 | 316 | 1420 | 0.30 | 540 | 12 |
1.50 | 4.5 | 460 | 0.72 | 445 | 311 | 1416 | 0.32 | 538 | 12 |
1.75 | 6.3 | 504 | 0.71 | 281 | 312 | 1470 | 0.27 | 699 | 15 |
2.00 | 6.7 | 532 | 0.73 | 130 | 310 | 1690 | 0.66 | 638 | 13 |
2.25 | 6.2 | 501 | 0.69 | 113 | 312 | 1669 | 1.01 | 710 | 17 |
[1] |
CROSS L E. Ferroelectric materials for electromechanical transducer applications. Materials Chemistry and Physics, 1996, 43: 108-115.
DOI URL |
[2] | CHAN H I W. Smart Ferroelectric materials for sensors and mechatronic device applications. Proceedings 1999 IEEE Hong Kong Electron Devices Meeting (HKEDM 99). Hong Kong, 1999: 68-71. |
[3] |
KHOLKIN A L, BDIKIN I K, KISELEV D A, et al. Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications. Journal of Electroceramics, 2007, 19: 83-96.
DOI URL |
[4] |
PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82: 1804-1811.
DOI URL |
[5] |
DONG C, LIANG R H, ZHOU Z Y, et al. Piezoelectric property of PZT-based relaxor-ferroelectric ceramics enhanced by Sm doping. Journal of Inorganic Materials, 2021, 36: 1270-1276.
DOI |
[6] |
LIU X, XUE S D, MA J P, et al. Electric-field-induced local distortion and large electrostrictive effects in lead-free NBT-based relaxor ferroelectrics. Journal of the European Ceramic Society, 2018, 38: 4631-4639.
DOI URL |
[7] |
PENG J G L, ZENG J T, LI G R, et al. Softening-hardening transition of electrical properties for Fe3+-doped (Pb0.94Sr0.05La0.01)- (Zr0.53Ti0.47)O3 piezoelectric ceramics. Ceramics International, 2017, 43: 13233-13239.
DOI URL |
[8] |
YAN Y X, LI Z M, XIA Y S, et al. Ultra-high piezoelectric and dielectric properties of low-temperature-sintered lead hafnium titanate-lead niobium nickelate ceramics. Ceramics International, 2020, 46: 5448-5453.
DOI URL |
[9] |
FENG Y, LI W L, XU D, et al. Enhanced piezoelectric properties and constricted hysteresis behaviour in PZT ceramics induced by Li+-Al3+ ionic pairs. RSC Advances, 2016, 6: 36118-36124.
DOI URL |
[10] |
THONGMEE N, WATCHARAPASORN A, JIANSIRISOMBOONS. Structure-property relations of ferroelectric Pb(Zr0.52Ti0.48)O3-(Bi3.25La0.75)Ti3O12 ceramics. Current Applied Physics, 2008, 8: 367-371.
DOI URL |
[11] |
KIM Y M, KIM J C, UR S C, et al. Effects of Al2O3 on the piezoelectric properties of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. Journal of Electroceramics, 2006, 16: 347-350.
DOI URL |
[12] |
LEE S M, LEE S H, YOON C B, et al. Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics. Journal of Electroceramics, 2007, 18: 311-315.
DOI URL |
[13] |
KOZIELSKI L, ADAMCZYK M, ERHART J, et al. Application testing of Sr doping effect of PZT ceramics on the piezoelectric transformer gain and efficiency proposed for MEMS actuators driving. Journal of Electroceramics, 2012, 29: 133-138.
DOI URL |
[14] | PANDEY D, SINGH A K, BAIK S. Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O3 ceramics. Acta Crystallographica A-Foundation and Advances, 2008, 64: 192-203. |
[15] |
KIM H T, NAM M H, KIM J H, et al. Microwave dielectric properties and chemical resistance of low-temperature-sintered CaZrB2O6 ceramics. International Journal of Applied Ceramic Technology, 2009, 6: 587-592.
DOI URL |
[16] |
KUZENKO D V. Critical temperature below the Curie temperature of ferroelectric ceramics PZT. Journal of Advanced Dielectrics, 2021, 11: 2150006.
DOI URL |
[17] |
PEREIRA M, PEIXOTO A G, GOMES M J M. Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. Journal of the European Ceramic Society, 2001, 21: 1353-1356.
DOI URL |
[18] |
SHUKLA A K, AGRAWAL V K, DAS I M L, et al. Dielectric response of PLZT ceramics x/57/43 across ferroelectric-paraelectric phase transition. Bull. Mat. Sci., 2011, 34: 133-142.
DOI URL |
[19] |
KAMEL T M, DE WITH G. Poling of hard ferroelectric PZT ceramics. Journal of the European Ceramic Society, 2008, 28: 1827-1838.
DOI URL |
[20] |
REN X B. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Materials, 2004, 3: 91-94.
PMID |
[21] | LI F, ZHANG S J, LI Z R, et al. Recent development on relaxor-PbTiO3 single crystals: the origin of high piezoelectric response. Progress in Physics, 2012, 32: 178-198. |
[1] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[2] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[3] | DONG Chang, LIANG Ruihong, ZHOU Zhiyong, DONG Xianlin. Piezoelectric Property of PZT-based Relaxor-ferroelectric Ceramics Enhanced by Sm Doping [J]. Journal of Inorganic Materials, 2021, 36(12): 1270-1276. |
[4] | GUO Lin, QIAO Xianji, LI Xiuzhi, LONG Xifa, HE Chao. Dielectric, Ferroelectric and Piezoelectric Properties of Pb(In1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 Ternary Ceramics Near Morphotropic Phase Boundary [J]. Journal of Inorganic Materials, 2020, 35(12): 1380-1384. |
[5] | CHEN Bowen, WANG Jingxiao, JIANG Youlin, ZHOU Haijun, LIAO Chunjing, ZHANG Xiangyu, KAN Yanmei, NI Dewei, DONG Shaoming. Stable Zirconium Carbide Fibers Fabricated by Centrifugal Spinning Technique [J]. Journal of Inorganic Materials, 2020, 35(12): 1385-1390. |
[6] | HU Xiao-Kai, ZHANG Shuang-Meng, ZHAO Fu, LIU Yong, LIU Wei-Shu. Thermoelectric Device: Contact Interface and Interface Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 269-278. |
[7] | NIE Heng-Chang, WANG Yong-Ling, HE Hong-Liang, WANG Gen-Shui, DONG Xian-Lin. Recent Progress of Porous PZT95/5 Ferroelectric Ceramics [J]. Journal of Inorganic Materials, 2018, 33(2): 153-161. |
[8] | ZHAO Lin, MA Jian, ZHANG Jun, WU Bo, XIAO Ding-Quan. Phase Structure and Piezoelectric Property of (1-x)K0.48Na0.52NbO3-xBi0.45Nd0.05(Na0.92Li0.08)0.5ZrO3 Lead-free Piezoceramics [J]. Journal of Inorganic Materials, 2018, 33(1): 87-92. |
[9] | YU Yao, WANG Xu-Sheng, LI Yan-Xia, YAO Xi. Effect of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics [J]. Journal of Inorganic Materials, 2015, 30(2): 219-224. |
[10] | LIU Ying, LAI Fa-Chun, Huang Zhi-Gao, SHEN Dong-Quan, LONG Xi-Fa. Preparation and Characterization of A New Ferroelectric Ternary Solid Solution Pb(Lu1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 [J]. Journal of Inorganic Materials, 2014, 29(9): 912-916. |
[11] | ZENG Tao, BAI Yang, SHEN Xi-Xun, WANG Bao-Feng, DONG Xian-Lin, ZHOU Zhi-Yong. Investigation on the Mechanical and Ferroelectric Properties of the Porous PZT 95/5 Ceramics [J]. Journal of Inorganic Materials, 2014, 29(7): 758-762. |
[12] | JIANG Xiang-Ping, LI Lu, CHEN Chao, TANG Jie, ZHENG Kai-Ping, LI Xiao-Hong. Structure and Properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 Lead-free Ceramics with High Piezoelectric Constant [J]. Journal of Inorganic Materials, 2014, 29(1): 33-37. |
[13] | CHU Tao, AI Liao-Dong, LONG Xi-Fa. Preparation and Characterization on Piezo-/Ferro-electric Properties of (1-x)(KNN+LT)+xBI Ceramics [J]. Journal of Inorganic Materials, 2014, 29(1): 43-46. |
[14] | LIU Ying, LONG Xi-Fa. Growth and Characterization of a New Lead Lutetium Niobate with Lead Titanate Ferroelectric Crystal [J]. Journal of Inorganic Materials, 2014, 29(1): 47-51. |
[15] | LAN Chun-Feng1, NIE Heng-Chang1, CHEN Xue-Feng, WANG Jun-Xia, WANG Gen-Shui, DONG Xian-Lin, LIU Yu-Sheng, HE Hong-Liang. Research on Low-temperature Phase Structures and Electrical Properties of Dense PZT 95/5 Ferroelectric Ceramics [J]. Journal of Inorganic Materials, 2013, 28(5): 502-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||