Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 675-681.DOI: 10.15541/jim20190353
Special Issue: 结构陶瓷论文精选(2020)
• RESEARCH PAPER • Previous Articles Next Articles
MO Yajie1,2,WANG Minglei1,2,CHEN Weijie1,LIN Guoqiang1,2()
Received:
2019-07-16
Revised:
2019-09-27
Published:
2020-06-20
Online:
2019-12-29
Supported by:
CLC Number:
MO Yajie,WANG Minglei,CHEN Weijie,LIN Guoqiang. Composition, Structure and Properties of the Cr1-xAlxN Hard Films Deposited by Arc Ion Plating[J]. Journal of Inorganic Materials, 2020, 35(6): 675-681.
Sample | N2 flow/ sccm | Working pressure/Pa | Arc current/A | Pulsed bias | Deposition time/min | |||
---|---|---|---|---|---|---|---|---|
ICr | IAl | Frequency/kHz | Amplitude/V | Duty cycle/% | ||||
CrAlN 1# | 80 | 0.8 | 110 | 50 | 30 | -200 | 40 | 120 |
CrAlN 2# | 80 | 0.8 | 95 | 65 | 30 | -200 | 40 | 120 |
CrAlN 3# | 80 | 0.8 | 80 | 80 | 30 | -200 | 40 | 120 |
CrAlN 4# | 80 | 0.8 | 65 | 95 | 30 | -200 | 40 | 120 |
Table 1 Deposition parameters of Cr1-xAlxN films
Sample | N2 flow/ sccm | Working pressure/Pa | Arc current/A | Pulsed bias | Deposition time/min | |||
---|---|---|---|---|---|---|---|---|
ICr | IAl | Frequency/kHz | Amplitude/V | Duty cycle/% | ||||
CrAlN 1# | 80 | 0.8 | 110 | 50 | 30 | -200 | 40 | 120 |
CrAlN 2# | 80 | 0.8 | 95 | 65 | 30 | -200 | 40 | 120 |
CrAlN 3# | 80 | 0.8 | 80 | 80 | 30 | -200 | 40 | 120 |
CrAlN 4# | 80 | 0.8 | 65 | 95 | 30 | -200 | 40 | 120 |
Sample | Surface composition/at% | $\frac{{{C}_{\text{Al}}}}{({{C}_{Cr}}+{{C}_{\text{Al}}})}$ | $\frac{{{C}_{\text{N}}}}{({{C}_{Cr}}+{{C}_{\text{Al}}})}$ | Film composition (Cr1-xAlxNy) | |||
---|---|---|---|---|---|---|---|
Cr | Al | N | O | ||||
CrAlN 1# | 32.9 | 22.6 | 41.8 | 2.7 | 0.41 | 0.75 | Cr0.59Al0.41N0.75 |
CrAlN 2# | 26.2 | 29.1 | 41.3 | 3.4 | 0.53 | 0.75 | Cr0.47Al0.53N0.75 |
CrAlN 3# | 19.8 | 34.6 | 42.2 | 3.4 | 0.64 | 0.78 | Cr0.36Al0.64N0.78 |
CrAlN 4# | 15.1 | 39.9 | 42.1 | 2.9 | 0.73 | 0.77 | Cr0.27Al0.73N0.77 |
Table 2 Surface composition of Cr1-xAlxN films
Sample | Surface composition/at% | $\frac{{{C}_{\text{Al}}}}{({{C}_{Cr}}+{{C}_{\text{Al}}})}$ | $\frac{{{C}_{\text{N}}}}{({{C}_{Cr}}+{{C}_{\text{Al}}})}$ | Film composition (Cr1-xAlxNy) | |||
---|---|---|---|---|---|---|---|
Cr | Al | N | O | ||||
CrAlN 1# | 32.9 | 22.6 | 41.8 | 2.7 | 0.41 | 0.75 | Cr0.59Al0.41N0.75 |
CrAlN 2# | 26.2 | 29.1 | 41.3 | 3.4 | 0.53 | 0.75 | Cr0.47Al0.53N0.75 |
CrAlN 3# | 19.8 | 34.6 | 42.2 | 3.4 | 0.64 | 0.78 | Cr0.36Al0.64N0.78 |
CrAlN 4# | 15.1 | 39.9 | 42.1 | 2.9 | 0.73 | 0.77 | Cr0.27Al0.73N0.77 |
Sample | LC1/N | LC2/N | CPRS |
---|---|---|---|
CrAlN 1# | 75.4 | 83.8 | 633.36 |
CrAlN 2# | 64.6 | 87.3 | 1466.42 |
CrAlN 3# | 60.2 | 80.4 | 1216.14 |
CrAlN 4# | 61.3 | 82.5 | 1299.56 |
Table 3 Critical load and CPRS of Cr1-xAlxN films
Sample | LC1/N | LC2/N | CPRS |
---|---|---|---|
CrAlN 1# | 75.4 | 83.8 | 633.36 |
CrAlN 2# | 64.6 | 87.3 | 1466.42 |
CrAlN 3# | 60.2 | 80.4 | 1216.14 |
CrAlN 4# | 61.3 | 82.5 | 1299.56 |
[1] | LIN QING-HE, LI CHEN, XU YU-XIANG , et al. Thermal stability and oxidation resistance of Cr1-xAlxN coatings with single phase cubic structure. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2015,33(6):061513. |
[2] | LIU AI-HUA, DENG JIAN-XIN, CUI HAI-BING , et al. Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International Journal of Refractory Metals & Hard Materials, 2012,31:82-88. |
[3] | YU SEN-YANG, CHO TING-PIN, LIN JIA-HAU . Optimizing hydrophobic and wear-resistant properties of Cr-Al-N coatings. Thin Solid Films, 2013,544:612-616. |
[4] | REITER A E, DERFLINGER V H, HANSELMANN B , et al. Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation. Surface & Coatings Technology, 2005,200(7):2114-2122. |
[5] | SUGISHIMA A, KAJIOKA H, MAKINO Y . Phase transition of pseudobinary Cr-Al-N films deposited by magnetron sputtering method. Surface and Coatings Technology, 1997,97(1/2/3):590-594. |
[6] | BANAKH O, SCHMID P E, R SANJINES , et al. High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering. Surface & Coatings Technology, 2003, 163-164:57-61. |
[7] | LIN J, MISHRA B, MOORE J J , et al. Microstructure, mechanical and tribological properties of Cr1-xAlxN films deposited by pulsed- closed field unbalanced magnetron sputtering (P-CFUBMS). Surface & Coatings Technology, 2006,201(7):4329-4334. |
[8] | KABIR M S, MUNROE P, ZHOU ZHI-FENG , et al. Study of the structure, properties, scratch resistance and deformation behaviour of graded Cr-CrN-Cr(1-x)AlxN coatings. Ceramics International, 2018,44:11364-11373. |
[9] | MUSIL J, KUNC F, ZEMAN H , et al. Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surface & Coatings Technology, 2002,154(2):304-313. |
[10] | MUSIL J . Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness. Surface & Coatings Technology, 2012,207:50-65. |
[11] | LEYLAND A, MATTHEWS A . On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000,246(1/2):1-11. |
[12] | LIN GUO-QIANG, ZHAO YAN-HUI, GUO HUI-MEI , et al. Experiments and theoretical explanation of droplet elimination phenomenon in pulsed-bias arc deposition. Acta Ophthalmologica, 2004,22(4):288-303. |
[13] | MESSIER R . Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and, Films), 1984,2(2):500. |
[14] | LI ZHAO, MUNROE P, JIANG ZHONG-TAO , et al. Designing superhard, self-toughening CrAlN coatings through grain boundary engineering. Acta Materialia, 2012,60(16):5735-5744. |
[15] | MIN K, HOFMANN S, SHIMIZU R . Surface orientation and structure of ion beam processed TiN films. Thin Solid Films, 1997,295(1/2):1-4. |
[16] | FU YING-YING, LI HONG-XUAN, JI LI , et al. Insight into Al existing form and its role on microstructure and properties of Cr1-xAlxN films. Surface & Interface Analysis, 2016,48(1):26-33. |
[17] | WANG QIAN-ZHI, ZHOU FEI, Yan JI-WANG . Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests. Surface & Coatings Technology, 2016,285:203-213. |
[18] | MUSIL J . Flexible hard nanocomposite coatings. RSC Advances, 2015,5(74):60482-60495. |
[19] | ZHANG SAM, SUN DEEN, FU YONG-QING , et al. Toughness measurement of thin films: a critical review. Surface & Coatings Technology, 2005,198(1/2/3):74-84. |
[20] | YALAMANCHILI K, SCHRAMM I C, JIMENEZ-PIQUE E , et al. Tuning hardness and fracture resistance of ZrN/Zr0.63Al0.37N nanoscale multilayers by stress-induced transformation toughening. Acta Materialia, 2015,89:22-31. |
[1] | CHENG Weijie, WANG Minglei, LIN Guoqiang. Composition, Structure and Properties of CrAlN-DLC Hard Composite Films Deposited by Arc Ion Plating [J]. Journal of Inorganic Materials, 2022, 37(7): 764-772. |
[2] | SU Dongliang, CUI Jin, ZHAI Pengbo, GUO Xiangxin. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802-808. |
[3] | ZHANG Ye, YAO Dongxu, ZUO Kaihui, XIA Yongfeng, YIN Jinwei, ZENG Yuping. Combustion Synthesis of Si3N4-BN-SiC Composites by in-situ Introduction of BN and SiC [J]. Journal of Inorganic Materials, 2022, 37(5): 574-578. |
[4] | LI Bangxin, ZHANG Qian, XIAO Jie, XIAO Wenyan, ZHOU Ying. Iron-doping Enhanced Basic Nickel Carbonate for Moisture Resistance and Catalytic Performance of Ozone Decomposition [J]. Journal of Inorganic Materials, 2022, 37(1): 45-50. |
[5] | CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 65-71. |
[6] | ZHANG Li-Yan, LI Hong, HU Li-Li, WANG Ya-Jie. Structure Modeling of Genes in Glass: Composition-structure-property Approach [J]. Journal of Inorganic Materials, 2019, 34(8): 885-892. |
[7] | GOU Sheng-Lian, NAI Xue-Ying, XIAO Jian-Fei, YE Jun-Wei, DONG Ya-Ping, LI Wu. Preparation and Thermal Decomposition of Basic Magnesium Chloride Whiskers [J]. Journal of Inorganic Materials, 2019, 34(7): 781-785. |
[8] | LIAO Chun-Jing, DONG Shao-Ming, JIN Xi-Hai, HU Jian-Bao, ZHANG Xiang-Yu, WU Hui-Xia. Deposition Temperature and Heat Treatment on Silicon Nitride Coating Deposited by LPCVD [J]. Journal of Inorganic Materials, 2019, 34(11): 1231-1237. |
[9] | LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, CHEN Yao-Qiang. Preparation of CexZr1-xO2 with Combined Composition for Improved Pd-only Three-way Catalyst [J]. Journal of Inorganic Materials, 2018, 33(7): 798-804. |
[10] | FAN Wen, WU Li-Min. Controllable Preparation of Nano-TiO2 Lens by Silicon Oil Two-step Dehydration Method [J]. Journal of Inorganic Materials, 2018, 33(12): 1337-1342. |
[11] | LI Jia-Ke, HAN Xiao-Qi, LIU Xin, WANG Yan-Xiang, GUO Ping-Chun, YANG Zhi-Sheng. Preparation of High Specific Surface Area Micro/Meso-porous SiOC Ceramics by the Low Temperature Phase Separation Method [J]. Journal of Inorganic Materials, 2018, 33(12): 1360-1364. |
[12] | XING Yuan-Yuan, WU Hai-Bo, LIU Xue-Jian, HUANG Zheng-Ren. Grain Composition on Solid-state-sintered SiC Ceramics [J]. Journal of Inorganic Materials, 2018, 33(11): 1167-1172. |
[13] | GUO Lu-Lu, LI Li-Xia, HE Peng-Cheng, YUAN Xia. Mesoporous Material Co/SBA-15 as Catalyst for the Decomposition of Cyclohexyl Hydroperoxide [J]. Journal of Inorganic Materials, 2017, 32(5): 543-549. |
[14] | MA Jian, ZHANG Bo-Ping, CHEN Jian-Yin. Excess Bi and Cooling Method on Phase Structure and Electrical Properties of BiFeO3-BaTiO3 Lead-free Ceramics [J]. Journal of Inorganic Materials, 2017, 32(10): 1035-1041. |
[15] | YUAN Qin, SONG Yong-Cai. Effects of Al and O Content on Transformation from SiAlCO to Si(Al)C Fibers after High Temperature Treatment [J]. Journal of Inorganic Materials, 2016, 31(4): 393-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||