Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (4): 491-496.DOI: 10.15541/jim20190211
Special Issue: 2020年环境材料论文精选(三)有机小分子去除
• RESEARCH LETTERS • Previous Articles Next Articles
ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke
Received:
2019-05-09
Revised:
2019-06-20
Published:
2020-04-20
Online:
2019-07-23
Supported by:
CLC Number:
ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation[J]. Journal of Inorganic Materials, 2020, 35(4): 491-496.
[1] | LEI Y, WANG G, SONG S , et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm, 2009,11:1857-1862. |
[2] | YE L Q, DENG K J, XU F , et al. Increasing visible-light absorption for photocatalysis with black BiOCl. Physical Chemistry Chemical Physics, 2012,14:82-85. |
[3] | ZHANG X, AI Z, JIA F , et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. Journal of Physical Chemistyr C, 2008,112:747-753. |
[4] | HENLE J, SIMON P, FRENZEL A , et al. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions. Chemistry of Materials, 2007,19:366-373. |
[5] | ZHANG K L, LIU C M, HUANG F Q , et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B-Environmental, 2006,68:125-129. |
[6] | CHAI S Y, KIM Y J, JUNG M H , et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. Journal of Catalysis, 2009,262:144-149. |
[7] | LI T B, CHEN G, ZHOU C , et al. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions, 2011,40:6751-6758. |
[8] | LI H T, HE X D, LIU Y , et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011,49:605-609. |
[9] | TANG L B, JI R B, CAO X K , et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 2012,6:5102-5110. |
[10] | RAY S C, SAHA A, JANA N R , et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. Journal of Physical Chemistry C, 2009,113:18546-18551. |
[11] | ZONG J, ZHU Y H, YANG X L , et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chemical Communications, 2011,47:764-766. |
[12] | SHEN J H, ZHU Y H, YANG X L , et al. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry, 2012,36:97-101. |
[13] | LI Y, HU Y, ZHAO Y , et al. An electrochemical avenue green- luminescent graphene quantum dots potential electron-acceptors photovoltaics. Advanced Materials, 2011,23:776-780. |
[14] | SHI W, LI X H, MA H M . A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angewandte Chemie International Edition, 2012,51:6432-6435. |
[15] | BAKER S N, BAKER G A . Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 2010,49:6726-6744. |
[16] | ZHANG H C, MING H, LIAN S Y , et al. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Transactions, 2011,40:10822-10825. |
[17] | LI H T, LIU R H, LIU Y , et al. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry, 2012,22:17470-17475. |
[18] | YU H, ZHANG H C, HUANG H , et al. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New Journal of Chemistry, 2012,36:1031-1035. |
[19] | ZHANG H, HUANG H, MING H , et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. Journal of Materials Chemistry, 2012,22:10501-10506. |
[20] | LIU J Y, LIU N Y, HAN Y Z , et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015,347:970-974. |
[21] | YU H J, SHI R, ZHAO Y F , et al. Smart utilization of carbon dots in semiconductor photocatalysis. Advanced Materials, 2016,28:9454-9477. |
[22] | KE J, LI X Y, ZHAO Q D , et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. Journal of Colloid and Interface Science, 2017,496:425-433. |
[23] | HU Y D, XIE X F, WANG X , et al. Visible-light upconversion carbon quantum dots decorated TiO2 for the photodegradation of flowing gaseous acetaldehyde. Applied Surface Science, 2018,440:266-274. |
[24] | DI J, XIA J X, JI M X , et al. Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Applied Materials & Interfaces, 2015,7:20111-20123. |
[25] | GUO C X, ZHAO D, ZHAO Q , et al. Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chemical Communications, 2014,50:7318-7321. |
[26] | LI H, HE X, KANG Z , et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition, 2010,49:4430-4434. |
[27] | ZHANG X, HUANG H, LIU J , et al. Carbon quantum dots serving as spectral converters through broadband upconversion of near- infrared photons for photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2013,1:11529-11533. |
[28] | ZHANG Z J, ZHENG T T, XU J Y , et al. Carbon quantum dots/Bi2WO6 composites for efficient photocatalytic pollutant degradation and hydrogen evolution. Nano, 2017,12:1750082. |
[29] | KIM H G, BORSE P H, CHOI W Y , et al. Photocatalytic nanodiodes for visible light photocatalysis. Angewandte Chemie International Edition, 2005,44:4585-4589. |
[30] | ZHU Y Y, LIU Y F, LV Y H , et al. Enhancement of photocatalytic activity for BiPO4 via phase junction. Journal of Materials Chemistry A, 2014,2:13041-13048. |
[31] | YUE D, CHEN D M, WANG Z H , et al. Enhancement of visible photocatalytic performances of a Bi2MoO6-BiOCl nanocomposite with plate-on-plate heterojunction structure. Physical Chemistry Chemical Physics, 2014,16:26314-26321. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[4] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[5] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[6] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[7] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[8] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[9] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[10] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[11] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[12] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[13] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[14] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[15] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||