Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (2): 217-223.DOI: 10.15541/jim20190157
Special Issue: 2020年能源材料论文精选(二):超级电容器; 【虚拟专辑】电致变色与热致变色材料; 【虚拟专辑】超级电容器(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
CHEN Jun1,MA Pei-Hua2,ZHANG Cheng1,Laurent RUHLMANN3,LYU Yao-Kang1()
Received:
2019-04-15
Revised:
2019-07-12
Published:
2020-02-20
Online:
2019-09-04
Supported by:
CLC Number:
CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film[J]. Journal of Inorganic Materials, 2020, 35(2): 217-223.
Fig. 2 (a) SEM image, (b) AFM height sensor image (2D), (c) AFM tapping phase image (2D) of PEDOT film, and (d) SEM image, (e) AFM height sensor image (2D), (f) AFM tapping phase image (2D) of PEDOT:Ce@TiO2 film
Fig. 4 Images of water droplets on the surfaces of PEDOT film (a) and PEDOT:Ce@TiO2 film (c), and images of ACN droplets on the surfaces of PEDOT film (b) and PEDOT: Ce@TiO2 film (d)
Fig. 6 (a) Schematic, (b) galvanostatic charge/discharge curves of electrochromic supercapacitor, and optical photos under the completing of charging and discharging.
Fig. S2 Photographs of solution of PEDOT oligomer in DCM, (b) solution of polyoxotitanate cluster [Ti8O7(HOEt)(OEt)21Ce] in DCM, (c) mixture solution of PEDOT and polyoxotitanate cluster [Ti8O7(HOEt)(OEt)21Ce] in DCM, (d) PEDOT film (e) PEDOT: Ce@TiO2 film.
Film | C/wt% | O/wt% | S/wt% | Ti/wt% | Ce/wt% |
---|---|---|---|---|---|
PEDOT | 62.38 | 20.13 | 17.49 | — | — |
PEDOT: Ce@TiO2 | 60.01 | 18.26 | 15.91 | 3.18 | 2.01 |
Table S1 Mass percentages of the carbon, oxygen, sulfur, titanium and cerium atoms in PEDOT and PEDOT: Ce@TiO2 film
Film | C/wt% | O/wt% | S/wt% | Ti/wt% | Ce/wt% |
---|---|---|---|---|---|
PEDOT | 62.38 | 20.13 | 17.49 | — | — |
PEDOT: Ce@TiO2 | 60.01 | 18.26 | 15.91 | 3.18 | 2.01 |
Fig. S7 (a) AFM height sensor image (2D), (b) AFM height sensor image (3D) of PEDOT film; (c) AFM height sensor image (2D), (d) AFM height sensor image (3D) of PEDOT:Ce@TiO2 film
Fig. S10 (a) Nyquist plots of the impedance spectra of PEDOT and PEDOT: Ce@TiO2; (b) Specific capacitance calculated from discharge curves of PEDOT and PEDOT: Ce@TiO2 films
[1] | SANTINA L M, ACHARYA S, D’ARCY J M . Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. J. Mater. Chem. A, 2017,5:11772-11780. |
[2] | YU C, WANG Y, CUI J , et al. Recent advances in the multi- modification of TiO2 nanotube arrays and their application in supercapacitors. Acta Phys. -Chim. Sin., 2017,33(10):1944-1959. |
[3] | HUANG Y, LIANG J, CHEN Y . An overview of the applications of graphene-based materials in supercapacitors. Small, 2012,8(12):1805-1834. |
[4] | WANG K, WU H, MENG Y , et al. Conducting polymer nanowire arrays for high performance supercapacitors. Small, 2014,10(1):14-31. |
[5] | HOLZE R, WU Y P . Intrinsically conducting polymers in electrochemical energy technology: trends and progress. Electrochim. Acta, 2014,122(9):93-107. |
[6] | LIU H, ZHOU W, MA X , et al. Capacitive performance of electrodeposited PEDOS and a comparative study with PEDOT. Electrochim. Acta, 2016,220:340-346. |
[7] | ZHOU H, ZHI X, ZHAI H . High performance flexible supercapacitor based on electropolymerized poly(3,4-ethylenedioxythiophene) grown on superficial expansion-treated graphite. Org. Electron., 2018,63:149-158. |
[8] | HUANG Y, ZHU M, HUANG Y , et al. Multifunctional energy storage and conversion devices. Adv. Mater., 2016,28(38):8344-8364. |
[9] | KLANKOWSKI S A, PANDEY G P, MALEK G T , et al. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale, 2015,7(18):8485-8494. |
[10] | YUKSEL R, CEVHER S C, CIRPAN A , et al. All-organic electrochromic supercapacitor electrodes. J. Electrochem. Soc., 2015,162(14):A2805-A2810. |
[11] | SNOOK G A, KAO P, BEST A S . Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources, 2011,196(1):1-12. |
[12] | CHEN Y, ZHU X, YANG D , et al. A novel design of poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)/molybdenum disulfide/poly (3,4-ethylenedioxythiophene) nanocomposites for fabric microsupercapacitors with favourable performances. Electrochim. Acta, 2019,298:297-304. |
[13] | MA L, NIU H, CAI J , et al. Optical, electrochemical, photoelectrochemical and electrochromic properties of polyamide/graphene oxide with various feed ratios of polyamide to graphite oxide. J. Mater. Chem. C, 2014,2(12):2272-2282. |
[14] | YANG H, YU J, SEO H J , et al. Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum. Appl. Surf. Sci., 2018,461:88-92. |
[15] | YUKSEL R, COSKUN S, GUNBAS G , et al. Nanocomposite electrochromic supercapacitor electrodes. J. Electrochem. Soc., 2017,164(4):A721-A727. |
[16] | LÜ P, WANG Y, JI C , et al. Superelastic graphene aerogel/poly (3,4-ethylenedioxythiophene)/MnO2 composite as compression- tolerant electrode for electrochemical capacitors. Materials, 2017,10(12):1353-1366. |
[17] | HOU Y, CHENG Y, HOBSON T , et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett., 2010,10(7):2727-2733. |
[18] | HERNANDEZ L A, RIVEROS G, MARTIN F , et al. Enhanced morphology, crystallinity and conductivity of poly(3,4-ethyldioxythiophene)/ ErGO composite films by in situ reduction of TrGO partially reduced on PEDOT modified electrode. Electrochim. Acta, 2017,240:155-162. |
[19] | HAN Y, DING B, TONG H , et al. Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites. Appl. Polym. Sci., 2011,121(2):892-898. |
[20] | ABDAH M A A M, RAHMAN N A, SULAIMA Y . Enhancement of electrochemical performance based on symmetrical poly (3,4-ethylenedioxythiophene) coated polyvinyl alcohol/graphene oxide/manganese oxide microfiber for supercapacitor. Electrochim. Acta, 2018,259:466-473. |
[21] | WU X, WANG Q, ZHANG W , et al. Preparation of all-solid-state supercapacitor integrated with energy level indicating functionality. Synthetic Met., 2016,220:494-501. |
[22] | CHEN Y, WANG Y, SUN P , et al. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A, 2015,3:20614-20618. |
[23] | CHAVAN H S, HOU BO, AHMED A T A , et al. Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring. Energ. Mat. Sol. C, 2018,185:166-173. |
[24] | CARBAS B B, TEKIN B . Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application. Polym. Bull., 2018,75:1547-1652. |
[25] | LE T, BIDAN G, GENTILE P , et al. Understanding the energy storage mechanisms of poly(3,4-ethylenedioxythiophene)-coated silicon nanowires by electrochemical quartz crystal microbalance. Materials Letter, 2019,240:59-61. |
[26] | NARESH V, ELIAS L, MARTHA S K . Poly (3,4-ethylenedioxythiophene) coated lead negative plates for hybrid energy storage systems. Electrochim. Acta, 2019,301:183-191. |
[27] | HARRIS A, MINETT A, AITCHISON P , et al. Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J. Mater. Chem., 2011,21(40):15987-15994. |
[28] | LIU H, LIU X, MU S , et al. A novel fabrication approach for three-dimensional hierarchical porous metal oxide/carbon nanocomposites for enhanced solar photocatalytic performance. Catal. Sci. Technol., 2017,7:1965-1970. |
[29] | KIM H, KIM K, CHOI D , et al. Evaluation of a reliable electrochromic device based on PEDOT:PSS-TiO2 heterostructure fabricated at low temperature. Ionics, 2017,23:2465-2474. |
[30] | MOLINA P, KOZMA K, SANTALA M , et al. Aqueous bismuth titanium-oxo sulfate cluster speciation and crystallization. Angew. Chem. Int. Ed., 2017,56:16277-16281. |
[31] | LÜ Y, DU W, REN Y , et al. An integrated electrochromic supercapacitor based on nanostructured Er-containing titania using an Er(III)-doped polyoxotitanate cage. Inorg. Chem. Front., 2016,3:1119-1123. |
[32] | LÜ Y, YAO M, HOLGADO J P , et al. A low-temperature single- source route to an efficient broad-band cerium (III) photocatalyst using a bimetallic polyoxotitanium cage. RSC Adv., 2013,3(33):13659-13662. |
[33] | ZHOU H, YAO W, LI G , et al. Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon, 2013,59:495-502. |
[34] | LIU G, YANG X, BONNEFONT A , et al. Conjugated hybrid films based on a new polyoxotitanate monomer. Chem. Commun., 2018,54:14132-14135. |
[35] | DU W, LÜ Y, CAI Z , et al. Flexible all-solid-state supercapacitor based on three-dimensional porous graphene/titanium-containing copolymer composite film. Acta Phys. -Chim. Sin., 2017,33(9):1828-1837. |
[36] | DU W, LÜ Y, LU H , et al. Surface modification by graphene oxide: an efficient strategy to improve the performance of activated carbon based supercapacitors. Chinese Chem. Lett., 2017,28(12):2285-2289. |
[37] | SONG Z, DUAN H, LI L . High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem. Eng. J., 2019,372:1216-1225. |
[38] | YAN J, ZHU D, LÜ Y, WEI X , et al. Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chem. Lett., 2019, DOI: 10.1016/j.cclet.2019.05.035. |
[39] | SONG Z, DUAN H, ZHU D , et al. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a “water-in-salt” gel electrolyte. J. Mater. Chem. A, 2019, DOI: 10.1039/C9TA02690H. |
[1] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[2] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[3] | ZHAO Yawen, QU Fajin, WANG Yanyi, WANG Zhiwen, CHEN Chusheng. Preparation and Properties of Aluminum Silicate Fiber Supported PtTFPP-PDMS Flexible Oxygen Sensing Components [J]. Journal of Inorganic Materials, 2024, 39(10): 1084-1090. |
[4] | XU Hao, QIAN Wei, HUA Yinqun, YE Yunxia, DAI Fengze, CAI Jie. Effects of Micro Texture Processed by Picosecond Laser on Hydrophobicity of Silicon Carbide [J]. Journal of Inorganic Materials, 2023, 38(8): 923-930. |
[5] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[6] | MENG Qing, LI Jiangtao. Hydrophobic BN Powders by Combustion Synthesis and Its Super-hydrophobic Coatings: Preparation and Property [J]. Journal of Inorganic Materials, 2022, 37(10): 1037-1042. |
[7] | SUN Peng, ZHANG Shaoning, BI Hui, DONG Wujie, HUANG Fuqiang. Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors [J]. Journal of Inorganic Materials, 2021, 36(7): 766-772. |
[8] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[9] | WANG Yiliang, AI Yunlong, YANG Shuwei, LIANG Bingliang, ZHENG Zhenhuan, OUYANG Sheng, HE Wen, CHEN Weihua, LIU Changhong, ZHANG Jianjun, LIU Zhiyong. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders [J]. Journal of Inorganic Materials, 2021, 36(4): 425-430. |
[10] | LI Zehui,TAN Meijuan,ZHENG Yuanhao,LUO Yuyang,JING Qiushi,JIANG Jingkun,LI Mingjie. Application of Conductive Metal Organic Frameworks in Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(7): 769-780. |
[11] | FEI Mingjie, ZHANG Renping, ZHU Guisheng, YU Zhaozhe, YAN Dongliang. Preparation and Pseudocapacitive Properties of Phosphate Ion-doped MnFe2O4 [J]. Journal of Inorganic Materials, 2020, 35(10): 1137-1141. |
[12] | DING Zhuofeng, YANG Yongqiang, LI Zaijun. Synthesis and Supercapacitor Performance of Histidine-functionalized Carbon Dots/Graphene Aerogel [J]. Journal of Inorganic Materials, 2020, 35(10): 1130-1136. |
[13] | MA Ya-Nan, LIU Yu-Fei, YU Chen-Xu, ZHANG Chuan-Kun, LUO Shi-Jun, GAO Yi-Hua. Monolayer Ti3C2Tx Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2020, 35(1): 93-98. |
[14] | LI Teng-Fei, HUANG Lu-Jun, YAN Xu-Dong, LIU Qing-Lei, GU Jia-Jun. Ti3C2Tx/Wood Carbon as High-areal-capacity Electrodes for Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(1): 126-130. |
[15] | ZHANG Tian-Yu, CUI Cong, CHENG Ren-Fei, HU Min-Min, WANG Xiao-Hui. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization [J]. Journal of Inorganic Materials, 2020, 35(1): 112-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||