[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303.
|
[2] |
TSAI K Y, TSAI M H, YEH J W, et al. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 2013,61(13):4887-4897.
|
[3] |
YEH J W. Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 2006,31(6):633-648.
|
[4] |
KIM K B, WARREN P J, CANTOR B, et al. Devitrification of nano-scale icosahedral phase in multicomponent alloys. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2007,449:983-986.
|
[5] |
CHEN C, ZHANG H, FAN Y Z, et al. Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification. Intermetallics, 2020,122:106778.
|
[6] |
EDALATI P, FLORIANO R, TANG Y P, et al. Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Materials Science and Engineering C, 2020,112:110908.
|
[7] |
NIU C N, LAROSA C R, MIAO J S, et al. Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Communications, 2018,9(1):1363.
URL
PMID
|
[8] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6(1):8485.
|
[9] |
JIN T, SANG X H, UNOCIC R R, et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 2018,30(23):1707512.
|
[10] |
HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 2019,166:271-280.
|
[11] |
WEI X F, LIU J X, LI F, et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019,39(10):2989-2994.
DOI
URL
|
[12] |
DEMIRSKYI D, BORODIANSKA H, SUZUKI T S, et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scripta Materialia, 2019,164:12-16.
|
[13] |
ZHANG Y, SUN S K, ZHANG W, et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process. Ceramics International, 2020,46(9):14299-14303.
|
[14] |
LIU D, WEN T Q, YE B L, et al. Synthesis of superfine high- entropy metal diboride powders. Scripta Materialia, 2019,167:110-114.
DOI
URL
|
[15] |
ZHANG Y, JIANG Z B, SUN S K, et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. Journal of the European Ceramic Society, 2019,39(13):3920-3924.
DOI
URL
|
[16] |
ZHANG R Z, GUCCI F, ZHU H Y, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 2018,57(20):13027-13033.
URL
PMID
|
[17] |
BERARDAN D, MEENA A K, FRANGER S, et al. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. Journal of Alloys and Compounds, 2017,704:693-700.
|
[18] |
SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage. Nature Communications, 2018,9(1):3400-3409.
URL
PMID
|
[19] |
DĄBROWA J, STYGAR M, MIKUŁA A, et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Materials Letters, 2018,216:32-36.
|
[20] |
MAO A Q, QUAN F, XIANG H Z, et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 2019,1194:11-18.
|
[21] |
MAO A Q, XIANG H Z, ZHANG Z G, et al. A new class of spinel high-entropy oxides with controllable magnetic properties. Journal of Magnetism and Magnetic Materials, 2020,497:165884.
|
[22] |
STYGAR M, DĄBROWA J, MOŹDZIERZ M, et al. Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels. Journal of The European Ceramic Society, 2020,40(4):1644-1650.
|
[23] |
CHEN K P, PEI X T, TANG L, et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018,38(11):4161-4164.
|
[24] |
GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 2018,38(10):3578-3584.
|
[25] |
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327.
|
[26] |
WITTE R, SARKAR A, KRUK R, et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Physical Review Materials, 2019,3(3):34406.
|
[27] |
JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120.
|
[28] |
QIU N, CHEN H, YANG Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance. Journal of Alloys and Compounds, 2019,777:767-774.
|
[29] |
BERARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 2016,10(4):328-333.
|
[30] |
MAO A Q, XIANG H Z, ZHANG Z G, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 2019,484:245-252.
|
[31] |
BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24):9536-9541.
|
[32] |
WANG H L, GAO Q M, JIANG L, et al. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small, 2011,7(17):2454-2459.
URL
PMID
|
[33] |
WEI W F, CUI X W, CHEN W X, et al. Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. Journal of Power Sources, 2009,186(2):543-550.
|
[34] |
SUBRAMANIAN V, ZHU H W, VAJTAI R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. Journal of Physical Chemistry B, 2005,109(43):20207-20214.
|
[35] |
PATIL U M, NAM M S, SOHN J S, et al. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. Journal of Materials Chemistry, 2014,2(44):19075-19083.
|