Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (4): 351-357.DOI: 10.15541/jim20150400
• Orginal Article • Previous Articles Next Articles
SHI Qi1, LEI Yong-Peng2, 3, WANG Ying-De1, WANG Zhong-Min4
Received:
2015-08-25
Revised:
2015-10-14
Published:
2016-04-20
Online:
2016-03-25
About author:
SHI Qi. E-mail: shiqi0806@163.com
Supported by:
CLC Number:
SHI Qi, LEI Yong-Peng, WANG Ying-De, WANG Zhong-Min. In-situ Preparation and Electrocatalytic Oxygen Reduction Performance of N-doped Graphene@CNF[J]. Journal of Inorganic Materials, 2016, 31(4): 351-357.
Fig. 2 (a) Polarization curves at 1600 r/min of different samples, (b) polarization curves at different rotating speeds and (c) the corresponding K-L plots of NG@CNF-Co10, (d) electron transfer number of different samples from 0.29 V to 0.49 V
[1] | GONG K P, DU F, XIA Z H, et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.Science, 2009, 323(5915): 760-764. |
[2] | LIN Z, WALLER G H, LIU Y, et al.Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions.Carbon, 2013, 53(3): 130-136. |
[3] | SHI Q, LEI Y P, WANG Y D, et al.B, N-codoped 3D micro-/ mesoporous carbon nanofibers web as efficient metal-free catalysts for oxygen reduction.Curr. Appl. Phys., 2015, 15(12): 1606-1614. |
[4] | WU G, MORE K L, JOHNSTON C M, et al.High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.Science, 2011, 332(6028): 443-447. |
[5] | HAN C, WANG Y D, LEI Y P, et al.In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation.Nano Res., 2015, 8(4): 1199-1209. |
[6] | WU N, WANG Y D, LEI Y P, et al.Preparation and photocatalytic activity of N-Ag co-doped TiO2/C porous ultrafine fibers mat.Ceram. Int., 2014, 40(1): 2017-2022. |
[7] | XIE S, WANG Y D, LEI Y P, et al.Simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance.RSC Adv., 2015, 5(80): 64911-64917. |
[8] | WANG Y D, WANG B, LEI Y P, et al.Scalable in situ growth of SnO2 nanoparticle chains on SiC ultrathin fibers via a facile Sol-Gel-flame method.Appl. Surf. Sci., 2015, 335: 208-212. |
[9] | GUO L P, BAI J, LIANG H O, et al.Preparation and application of carbon nanofibers-supported palladium nanoparticles catalysts based on electrospinning.J. Inorg. Mater., 2014, 29(8): 814-820. |
[10] | WANG B, WANG Y D, LEI Y P, et al. Tailoring of porous structure in macro-meso-microporous SiC ultrathin fibers via electrospinning combined with polymer-derived ceramics route. Mater. Manuf. Process., . |
[11] | WANG B, WANG Y D, LEI Y P, et al.Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance.J. Mater. Chem. A, 2014, 2(48): 20873-20881. |
[12] | WANG Y D, HAN C, ZHENG D C, et al.Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition.J. Mater. Chem. A, 2014, 2(25): 9607-9612. |
[13] | WANG H G, YUAN S, MA D L, et al.Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance.Energy Environ. Sci., 2015, 6(8): 1660-1681. |
[14] | DALLMEYER I, LIN L T, LI Y J, et al.Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning.Macromol. Mater. Eng., 2014, 299(5): 540-551. |
[15] | CHENG Y L, HUANG L, XIAO X, et al.Flexible and cross-linked N-doped carbon nanofiber network for high performance free standing supercapacitor electrode.Nano Energy, 2015, 15: 66-74. |
[16] | YE T N, LV L B, LI X H, et al.Strongly veined carbon nanoleaves as highly efficient metal-free electrocatalyst.Angew. Chem. Int. Ed., 2014, 53(27): 6905-6909. |
[17] | SHI Q, WANG Y D, WANG Z M, et al.3D interconnected networks constructed by in situ growth of N-doped graphene/carbon nanotubes on cobalt-containing carbon nanofibers for enhanced oxygen reduction.Nano Res., 2015, doi: 10.1007/s12274-015-0911-y. |
[18] | HUANG D, LUO Y, LI S, et al.Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions.Nano Res., 2014, 7(7): 1054-1064. |
[19] | LIANG J, ZHOU R F, CHEN X M, et al.Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction.Adv. Mater., 2014, 26(35): 6074-6079. |
[20] | LIANG J, DU X, GIBSON C, et al.N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction.Adv. Mater., 2013, 25(43): 6226-6231. |
[21] | KANG Y, CHU Z Y, ZHANG D J, et al.Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties.Carbon, 2013, 61(11): 200-208. |
[22] | ZHANG Y H, YI Q F, LIU X P, et al.Carbonizing products of the Fe/Co doped polypyrrole as efficient electrocatalysts for exygen reduction reaction.J. Inorg. Mater., 2014, 29(3): 269-274. |
[23] | WU N, WANG Y D, LEI Y P, et al.Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight.Appl. Surf. Sci., 2014, 319: 136-142. |
[24] | MA Y, WANG S, CHEN Z H.In situ growth of a carbon interphase between carbon fibres and a polycarbosilane-derived silicon carbide matrix.Carbon, 2011, 49(8): 2869-2872. |
[25] | ZHENG Y, JIAO Y, GE L, et al.Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis.Angew. Chem. Int. Ed., 2013, 125(11): 3192-3198. |
[26] | REN G Y, LI Y N, GUO Z Y, et al.Bio-inspired Co3O4- polypyrrole-graphene complex as efficient oxygen reduction catalyst by one-step ball-milling.Nano Res., 2015, 8(11): 3461-3471. |
[27] | JAGADEESH R, JUNGE H, POHL M, et al.Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions.J. Am. Chem. Soc., 2013, 135(29): 10776-10782. |
[28] | LIANG Y, LI Y, WANG H, et al.Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction.Nat. Mater., 2011, 10(10): 780-786. |
[29] | LEE J S, PARK G S, KIM S T, et al.A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam.Angew. Chem. Int. Ed., 2013, 52(3): 1026-1030. |
[30] | ZHANG G X, XU Y Q, WANG L, et al.Rational design of graphene oxide and its hollow CoO composite for superior oxygen reduction reaction.Sci. China Mater., 2015, 58(7): 534-542. |
[1] | YANG Daihui, SUN Tian, TIAN Hexin, SHI Xiaofei, MA Dongwei. Iron-nitrogen-codoped Mesoporous Carbon: Facile Synthesis and Catalytic Performance of Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2023, 38(11): 1309-1315. |
[2] | SUN Lian, GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui. Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2022, 37(7): 697-709. |
[3] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[4] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[5] | LIU Ziruo, LIU Wei, HAO Ce, HU Jinwen, SHI Yantao. Honeycomb-like Carbon-supported Fe Single Atom Catalyst: Preparation and Electrocatalytic Performance in Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2021, 36(9): 943-949. |
[6] | HAO Ce, LIU Ziruo, LIU Wei, SHI Yantao. Research Progress of Carbon-supported Metal Single Atom Catalysts for Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2021, 36(8): 820-834. |
[7] | ZHU Yong, GU Jun, YU Tao, HE Haitong, YAO Rui. Synthesis and Property of Platinum-cobalt Alloy Nano Catalyst [J]. Journal of Inorganic Materials, 2021, 36(3): 299-305. |
[8] | DING Sheng, NING Kai, YUAN Binxia, PAN Weiguo, YIN Shibin, LIU Jianfeng. Durability of Fe-N/C Catalysts with Different Nanostructures for Electrochemical Oxygen Reduction in Alkaline Solution [J]. Journal of Inorganic Materials, 2020, 35(8): 953-958. |
[9] | HE Wang-Tao, MA Ru-Guang, ZHU Yu-Fang, YANG Ming-Jie, WANG Jia-Cheng. Renewable Porous Carbons Prepared by KOH Activation as Oxygen Reduction Electrocatalysts [J]. Journal of Inorganic Materials, 2019, 34(10): 1115-1122. |
[10] | LI Shu-Ling, YUAN Xian-Xia, KONG Hai-Chuan, XU Jin, MA Zi-Feng. Fe-PPy-TsOH/C as Cathode Catalyst for Proton Exchange Membrane Fuel Cells [J]. Journal of Inorganic Materials, 2017, 32(4): 393-399. |
[11] | YU Jian-Hua, XU Li-Li, ZHANG Wu-Shou, ZHU Qian-Qian, WANG Xiao-Xia, DONG Li-Feng. Enhanced Capacitive Properties of All-solid-state Symmetric Graphene Supercapacitors by Incorporating Nitrogen-doping and SnO2 Nanoparticles [J]. Journal of Inorganic Materials, 2015, 30(6): 662-666. |
[12] | ZHANG Yu-Hui, YI Qing-Feng, LIU Xiao-Ping, XIANG Bai-Lin. Carbonizing Products of the Fe/Co Doped Polypyrrole as Efficient Electrocatalysts for Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2014, 29(3): 269-274. |
[13] | MA Wen, HAN Peng-Xian, KONG Qing Shan, ZHANG Ke Jun, BI Cai Feng, CUI Guang Lei. Study on the MoN/Nitrogen-doped Graphene Sheets Composite for Lithium Ion Capacitor Electrode Materials [J]. Journal of Inorganic Materials, 2013, 28(7): 733-738. |
[14] | GUO Fu-Rong, TIAN Jian-Hua, HU Min, SHAN Zhong-Qiang. Synthesis of Pt/WO3-C as Catalyst for Oxygen Reduction Reaction and Its Evaluation of Stability [J]. Journal of Inorganic Materials, 2013, 28(10): 1121-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||