Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (7): 713-718.DOI: 10.15541/jim20140591
• Orginal Article • Previous Articles Next Articles
ZHOU Min-Jie, ZHANG Na, HOU Zhao-Hui
Received:
2014-11-17
Revised:
2015-01-28
Published:
2015-07-20
Online:
2015-06-25
About author:
ZHOU Min-Jie. E-mail:zmj0104@126.com
Supported by:
CLC Number:
ZHOU Min-Jie, ZHANG Na, HOU Zhao-Hui. Preparation and Photocatalytic Activity for Hydrogen Evolution of Graphene-ZnIn2S4 Nanocomposite Spheres[J]. Journal of Inorganic Materials, 2015, 30(7): 713-718.
[1] | SHEN S H, GUO P H, ZHAO L, et al.Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4.J. Solid State Chem., 2011, 184(8): 2250-2256. |
[2] | WEI Q L, MU S, YAN Y, et al.Preparation and surfactant assisted morphology controllable growth of ZnIn2S4.Chinese J. Inorg. Chem., 2010, 26(2): 269-273. |
[3] | LI C X, LI H H, HAN L J, et al.Ionothermal/hydrothermal synthesis of the ternary metal chalcogenide ZnIn2S4.Mater. Lett., 2011, 65(15/16): 2537-2540. |
[4] | SHEN S H, ZHAO L, GUAN X J, et al. Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: a casestudy of alkaline-earth metal doping.J. Phys. Chem. Solids., 2012, 73(1): 79-83. |
[5] | SHEN S H, CHEN J, WANG X X, et al.Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light.J. Power Sources, 2011, 196(23): 10112-10119. |
[6] | SHEN S H, CHEN X B, REN F, et al.Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides.Nanoscale Res. Lett., 2011, 6(9): 290-296. |
[7] | LI Y X, WANG J X. PENG S Q, et al.Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int. J. Hydrog. Enenergy, 2010, 35(18): 7116-7126. |
[8] | MIN S X, LV G X.Preparation of CdS/graphene composites and photocatalytic hydrogen generation from water under visible light irradiation.Acta Phys. Chim. Sin., 2011 27(9): 2178-2184. |
[9] | YU L H, RUAN H, ZHENG L, et al. A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotech., 2013, 24(37): 375601-1-11. |
[10] | ZHANG J, QI L F, RAN J R, et al. Ternary NiS/ZnxCd1-xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity. Adv. Energy Mater., 2014, 4(10): 1301925-1-6. |
[11] | GUO D, WANG P, ZHENG Q Y, et al.One-step synthesis of flower-like Bi2WO6-RGO composite photocatalysts.J. Inorg. Mater., 2014, 29(11): 1193-1198. |
[12] | ZHOU J, TIAN G H, CHEN Y J, et al.In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen peoduction performance.Chem. Commun., 2013, 49(22): 2237-2239. |
[13] | LI H F, YU H T, CHEN S, et al.Fabrication of graphene wrapped ZnIn2S4 microspheres heterjunction with enhanced interfacial contact and its improved photocatalytic performance.Dalton Trans., 2014, 43(7): 2888-2894. |
[14] | ZHOU M J, YAN J H, CUI P.Synthesis and enhanced photocatalytic performance of WO3 nanorods @graphene nanoco, posites.Mater. Lett., 2012, 89(12): 258-261. |
[15] | ZHU M S, CHEN P L, LIU M H.Graphene oxide enwrapped Ag/AgX(X=Br, Cl) nanocomposite as a highly effcient visible- light plasmonic photocatalyst.ACS Nano, 2011, 5(6): 4529-4536. |
[16] | ZHANG Q, HE Y Q, CHEN X G, et al.Intercalated structure and photocatalytic properties of TiO2-graphene oxide composite.Acta Phys. Chim. Sin., 2010 26(3): 654-662. |
[17] | LI Y B, ZHANG H M, LIU P R, et al.Cross-linked g-C3N4/RGO nanocomposites with tunable band structure and enhangced visible light photocatalytic activity.Small, 2013, 9(19): 3336-3344. |
[18] | CHAUDHARI N S, WARULE S S, KALE B B.Aechitecture of rose and hollow marigold-like ZnIn2S4 flower: structureal, optical and pjotocatalytic study.RSC Adv., 2014, 4(24): 12182-12187. |
[19] | PATIL1B N, ACHARYA S. A. Preparation of ZnS-graphene nanocomposite and its photocatalytic behavior for dye degradation.Adv. Mat. Lett., 2014, 5(3): 113-116. |
[20] | LEE E, HONG J Y, KANG H Y. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater., 2012, 219-220(6): 13-18. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | JING Xinxin, CHEN Biqing, ZHAI Jiaxin, YUAN Meiling. Ni-Co-B-RE (Sm, Dy, Tb) Composite Electrodes: Preparation by Chemical Deposition Method and Electrocatalytic Hydrogen Evolution Performance [J]. Journal of Inorganic Materials, 2024, 39(5): 467-476. |
[3] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[4] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[5] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[6] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[7] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[8] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[9] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[10] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[11] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[12] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[13] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[14] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[15] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||