[1] DU SHU-HUI, LIU YA-GUANG, KONG LING-YIN, et al. Seeded secondary growth synthesis of ZIF-8 membranes supported on ?-Al2O3 ceramic tubes. J. Inorg. Mater., 2012, 27(10): 1105–1111.
[2] JANIAK C, VIETH J K. MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New. J. Chem., 2010, 34(11): 2366–2388.
[3] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 6149–6161.
[4] LU G, HUPP J T. Metal-organic frameworks as sensors: a ZIF-8 based fabry-pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc., 2010, 13(23): 7832–7833.
[5] MUSTAFA D, BREYNAERT E, BAJPE S R, et al. Stability improvement of Cu3(BTC)2 metal-organic frameworks under steaming conditions by encapsulation of a Keggin polyoxometalate. Chem. Commun., 2011, 47(28): 8037–8039.
[6] SONG J, LUO Z, BRITT D K, et al. A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc., 2011, 133(42): 16839–16846.
[7] SUN C Y, LIU S X, LIANG D D, et al. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J. Am. Chem. Soc., 2009, 131(5): 1883–1888.
[8] BAJPE S R, KIRSCHHOCK C E A, AERTS A, et al. Direct observation of molecular-level template action leading to self-assembly of a porous framework. Chem. Eur. J., 2010, 16(13): 3926–3932.
[9] YANG H, LI J, WANG L Y, et al. Exceptional activity for direct synthesis of phenol from benzene over PMoV@MOF with O2. Catal. Commun., 2013, 35: 101–104.
[10] WEE L H, JANSSENS N, BAJPE S R, et al. Heteropolyacid encapsulated in Cu3(BTC)2 nanocrystals: an effective esterification catalyst. Catal Today, 2011, 171(1): 275–280.
[11] ZHU J, SHEN M M, ZHAO X J, et al. Polyoxometalate-based metal-organic frameworks as catalysts for the selective oxidation of alcohols in micellar systems. ChemPlusChem, 2014, 79(6): 872–878.
[12] GASCON J, KAPTEIJN F. Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed., 2010, 49: 1530–1532.
[13] CHMELIK C, VO? H, BUX H, et al. Adsorption and diffusion-basis for molecular understanding of permeation through molecular sieve membranes. Chem. Ing. Tech., 2011, 83(1/2): 104–112.
[14] ZOU X, ZHANG F, THOMAS S, et al. Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures. Chem. Eur. J., 2011, 17(43): 12076–12083.
[15] ZACHER D, BAUNEMANN A, HERMES S, et al. Deposition of microcrystalline Cu3(btc)2 and Zn2(bdc)2(dabco) at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth. J. Mater. Chem., 2007, 17(27): 2785–2792.
[16] GASCON J, AGUADO S, KAPTEIJN F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Micropro. Mesopor. Mater., 2008, 113(1/2/3): 132–138.
[17] LI M Y, DINC? M. Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition. Chem. Sci., 2014, 5: 107–111.
[18] NAN J P, DONG X L, WANG W J. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous r-alumina support. Langmuir., 2011., 27(8): 4309–4312.
[19] TOM R C, VAN ASSCHE, GERT DESMET, et al. Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Micropro. Mesopor. Mater., 2012, 158: 209–213.
[20] GUO H L, ZHU G S, HEWITT I J, et al. “Twin Copper Source” growth of metal?organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc., 2009, 131(5): 1646–1647.
[21] LI Y S, LIANG F Y, BUX H, et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membrane. Sci., 2010, 354(1/2): 48–54.
[22] HUANG A, BUX H, STEINBACH F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem. Int. Ed., 2010, 49(29): 4958–4961.
[23] HU Y, DONG X, NAN J, et al. Metal-organic framework membranes fabricated via reactive seeding. Chem. Commun., 2011, 47(2): 737–739.
[24] BIEMMI E, DARGA A, STOCK N, et al. Direct growth of Cu3(BTC)2(H2O)3·xH2O thin films on modified QCM-gold electrodes: water sorption isotherms. Micropro. Mesopor. Mater., 2008, 114(1/2/3): 380–386.
[25] LIU J, SUN F, ZHANG F, et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J. Mater. Chem., 2011, 21(11): 3775–3778.
[26] AGUADO S, CANIVET J, FARRUSSENG D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem. Commun., 2010, 46(42): 7999–8001.
[27] HERMES S, ZACHER D, BAUNEMANN A, et al. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater., 2007, 19(9): 2168–2173.
[28] YANG L, NARUKE H, YAMASE T. A novel organic/inorganic hybrid nanoporous material incorporating Keggin-type polyoxometalates. Inorg. Chem. Commun., 2003, 6(8): 1020–1024.
[29] ZHOU BANG-NA, YU ZHONG-XING, LU ZHI-HUA, et al. The process research of copper dissolve in sulfuric acid and hydrogen peroxide solution. Nonferrous Metals (Extractive Metallurgy), 1994, 3: 18–20.
[30] CHEN JING, WU SHI-PING, PAN RONG-KAI. Degradation of Rhodamine B by catalytic oxidation in Cu2+-Mn2+-H2O2 system. Environ. Protection. Chem. Indust., 2009, 29(1): 26–30.
[31] LI QING-YUAN, JI SHENG-FU, HAO ZHI-MOU. Metal-organic materials and their applications in catalysis. Prog. Chem., 2012, 24(8): 1506–1518.
[32] WANG DE-SHENG, RUN LIANG, WANG XIAO-LAI. The progress and study of heteropoly acid catalysts. J. Mol. Catal. (Chin)., 2012, 26(4): 366–375.
[33] ZHANG HAI-YAN, DAI YUE-LI, CAI LEI. Research progress of heteropoly acid catalyzed oxidative desulfurization. Chem. Ind. Eng. Prog., 2013, 32(4): 809–815. |