Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (1): 107-112.DOI: 10.3724/SP.J.1077.2011.11411
• Orginal Article • Previous Articles
XU Ying1,2, LIU Xuan-Yong1, DING Chuan-Xian3
Received:
2011-07-06
Published:
2012-01-09
Online:
2011-12-19
About author:
XU Ying (1985-), female, candidate of PhD. E-mail: xuying20033957@163.com
Supported by:
CLC Number:
XU Ying, LIU Xuan-Yong, DING Chuan-Xian. Effect of Fluoride Content on Morphology and Phase Composition of ZrO2 Nanotubes[J]. Journal of Inorganic Materials, 2012, 27(1): 107-112.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 SEM images of zirconium anodized in glycerol + 5vol% H2O electrolyte with (a) 0.1 mol/L, (b) 0.5 mol/L, (c) 0.7 mol/L and (d) 1.1 mol/L NH4F at 80 V for 30 min
Fig. 2 Cross-sectional images of ZrO2 nanotube arrays formed in glycerol with: (a) 0.1 mol/L, (b) 0.5 mol/L, (c) 0.7 mol/L NH4F and (d) bottom view image of ZrO2 nanotube arrays formed in 0.7 mol/L NH4F containing electrolyte at 80 V for 30 min
[1] | Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials, 1999, 20(1): 1-25. |
[2] | Covacci V, Bruzzese N, Maccauro G, et al. In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. Biomaterials, 1999, 20(4): 371-376. |
[3] | Chevalier J. What future for zirconia as a biomaterial? Biomaterials, 2006, 27(4): 535-543. |
[4] | Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13): 2161-2175. |
[5] | Liu X Y, Huang A P, Ding C X, et al. Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Biomaterials, 2006, 27(21): 3904-3911. |
[6] | Li W F, Liu X Y, Huang A P, et al. Structure and properties of zirconia (ZrO2) films fabricated by plasma-assisted cathodic arc deposition. Journal of Physics D: Applied Physics, 2007, 40(8): 2293-2299. |
[7] | Bauer S, Park J, Faltenbacher J, et al. Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integrative Biology, 2009, 1(8/9): 525-532. |
[8] | Guo L M, Zhao J L, Wang X X, et al. Structure and bioactivity of zirconia nanotube arrays fabricated by anodization. International Journal of Applied Ceramic Technology, 2009, 6(5): 636-641. |
[9] | Macak J M, Hildebrand H, Marten-Jahns U, et al. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 2008, 621(2): 254-266. |
[10] | Lockman Z, Sreekantan S, Ismail S, et al. Influence of anodisation voltage on the dimension of titania nanotubes,Journal of Alloys and Compounds, 2010, 503(2): 359-364. |
[11] | Wei W, Macak J M, Schmuki P. High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta. Electrochemistry Communications, 2008, 10(3): 428-432. |
[12] | Shin Y, Lee S. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays. Nanotechnology, 2009, 20(10): 105301-105305. |
[13] | Lee W J, Smyrl W H. Oxide nanotube arrays fabricated by anodizing processes for advanced material application. Current Applied Physics, 2008, 8(6): 818-821. |
[14] | Tsuchiya H, Macak J M, Ghicov A, et al. Self-organized porous TiO2 and ZrO2 produced by anodization. Corrosion Science, 2005, 47(12): 3324-3335. |
[15] | Berger S, Faltenbacher J, Bauer S, et al. Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization. Physical Status Solidi (RRL), 2008, 2(3): 102-104. |
[16] | Berger S, Jakubka F, Schmuki P. Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications, 2008, 10(12): 1916-1919. |
[17] | Zhao J L, Wang X X, Xu R Q, et al. Fabrication of high aspect ratio zirconia nanotube arrays by anodization of zirconium foils. Materials Letters, 2008, 62(49): 4428-4430. |
[18] | Tsuchiya H, Macak J M, Taveira L, et al. Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chemical Physics Letters, 2005, 410(4/5/6): 188-191. |
[19] | Khalil N, Leach J S L. Anodic oxidation of zirconium: effect of fluoride contamination on oxide structure and transport processes. Journal of Applied Electrochemistry, 1996, 26(2): 231-233. |
[20] | Lockman Z, Ismail S, Kawamura G, et al. Formation of zirconia and titania nanotubes in fluorine containing glycerol electrochemical bath. Defect and Diffusion Forum, 2011, 312-315(76): 76-81. |
[21] | Ismail S, Ahmad Z A, Berenov A, et al. Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium. Corrosion Science, 2011, 53(4): 1156-1164. |
[22] | Wang D A, Liu Y, Yu B, et al. TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/ catalytic performance. Chemistry of Materials, 2009, 21(7): 1198-1206. |
[23] | Zhu K, Vinzant T B, Neale N R, et al. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Letters, 2007, 7(12): 3739-3746. |
[24] | Zhang L, Shao J M, Han Y. Enhanced bioactivity of self-organized ZrO2 nanotube layer by annealing and UV irradiation. Materials science and engineering C, 2011, 31(5): 1104-1110. |
[25] | Zhao J L, Xu R Q, Wang X X, et al. In situ synthesis of zirconia nanotube crystallines by direct anodization. Corrosion Science, 2008, 50(6): 1593-1597. |
[26] | Habazaki H, Uozumi M, Konno H, et al. Crystallization of anodic titania on titanium and its alloys. Corrosion Science, 2003, 45(9): 2063-2073. |
[27] | Fang D, Huang K L, Luo Z P, et al. Freestanding ZrO2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure. Journal of Materials Chemistry, 2011, 21(13): 4989-4994. |
[28] | Livage J, Doi K, Mazieres C. Nature and thermal evolution of amorphous hydrated zirconium oxide. Journal of the American Chemical Society, 1968, 51(6): 349-353. |
[29] | Qiu X F, Howe J Y, Meyer H M, et al. Thermal stability of HfO2 nanotube arrays. Applied Surface Science, 2011, 257(9): 4075-4081. |
[30] | Muratore F, Hashimoto T, Skeldon P, et al. Effect of ageing in the electrolyte and water on porous anodic films on zirconium. Corrosion Science, 2011, 53(6): 2299-2305. |
[1] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[2] | LI Haiyan, KUANG Fenghua, WU Haolong, LIU Xiaogen, BAO Yiwang, WAN Detian. Temperature Dependence of Residual Tensile Stresses and Its Influences on Crack Propagation Behaviour [J]. Journal of Inorganic Materials, 2023, 38(11): 1265-1270. |
[3] | LI Haiyan, HAO Hongjian, TIAN Yuan, WANG Changan, BAO Yiwang, WAN Detian. Effects of Residual Stresses on Strength and Crack Resistance in ZrO2 Ceramics with Alumina Coating [J]. Journal of Inorganic Materials, 2022, 37(4): 467-472. |
[4] | JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847-856. |
[5] | XU Yun-Qing,WANG Hai-Zeng. Sodium Magnesium Fluoride Particles of Different Morphologies: Prepared by EDTA-assisted Hydrothermal Method [J]. Journal of Inorganic Materials, 2019, 34(9): 933-937. |
[6] | ZHANG Ya-Ping, DING Wen-Ming, ZHU Hai-Feng, HUANG Cheng-Xing, YU Lian-Qing, WANG Yong-Qiang, LI Zhe, XU Fei. Photoelectrochemical Properties of MoSe2 Modified TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2019, 34(8): 797-802. |
[7] | Sheng-Yang FU, Bin YU, Hui-Feng DING, Guo-Dong SHI, Yu-Fang ZHU. Zirconia Incorporation in 3D Printed β-Ca2SiO4 Scaffolds on Their Physicochemical and Biological Property [J]. Journal of Inorganic Materials, 2019, 34(4): 444-454. |
[8] | DING Shan-Shan, CHEN Xin-Xin, LI Yu-Zhen, HAN Wen-Feng, LV De-Yi, LI Ying, TANG Hao-Dong. High-surface-area Magnesium Fluoride: Preparation by Template Method and Catalytic Activity for the Dehydrofluorination of HFC-152a [J]. Journal of Inorganic Materials, 2018, 33(11): 1186-1192. |
[9] | WANG Hong-Da, ZHOU Hai-Jun, DONG Shao-Ming, WANG Zhen, HU Jian-Bao, FENG Qian. Corrosion Behavior of SiCf/SiC Composites in High Temperature Fluoride Salt Environment [J]. Journal of Inorganic Materials, 2017, 32(11): 1133-1140. |
[10] | ZHAO Wei-Wei, CHEN Xiao-Xin, LIN Chu-Cheng, SONG Xue-Mei, ZENG Yi, CHANG Cheng-Kang. Quantitative Calculation of Thermal Conductivity of Tetragonal Phase and Grain Boundary on Zirconia Ceramics [J]. Journal of Inorganic Materials, 2017, 32(11): 1177-1180. |
[11] | HAN Wei, YANG Shu-Min, LI Hai-Tao, QI Yun-Kai, GU Jian-Jun. Synthesis and Magnetoelectric Properties of NiFe2O4-BiFeO3 Nanotubes [J]. Journal of Inorganic Materials, 2016, 31(4): 388-392. |
[12] | YU Lian-Qing, HUANG Cheng-Xing, ZHANG Ya-Ping, DONG Kai-Tuo, HAO Lan-Zhong. Photoelectrochemical Properties of MoS2 Modified TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2016, 31(11): 1237-1241. |
[13] | LI Liang-Qing, ZHANG Wen-Xu, YANG Jian-Hua, LU Jin-Ming, YIN De-Hong, WANG Jin-Qu. Preparation and Characterization of Water Perm-selectivity ZSM-5 Zeolite Membrane Using Fluoride Route [J]. Journal of Inorganic Materials, 2015, 30(11): 1167-1171. |
[14] | HAO Ai-Wen, HUANG Li-Qing, CHENG Long, Li Xin, ZHANG Wei-Wei, SHAN Dong-Zhi, FENG Xue-Hong. Fast Fabrication of Highly Ordered Porous Anodic Alumina Membranes by Hard-mild Anodization [J]. Journal of Inorganic Materials, 2014, 29(6): 645-649. |
[15] | GONG Yun, CHEN Hang-Rong, CUI Xiang-Zhi, JIANG Wan, SHI Jian-Lin. Pd Loaded Mesoporous ZrO2-TiO2 Composite and Its CO Catalytic Oxidation Property [J]. Journal of Inorganic Materials, 2013, 28(9): 992-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||