Journal of Inorganic Materials
CAO Bingqiang1, LI Xingmu1, WEI Haoming2, SHAN Yansu1
Received:2025-11-06
Revised:2025-12-18
About author:CAO Bingqiang (1978-), professor. E-mail: mse_caobq@ujn.edu.cn
Supported by:CLC Number:
CAO Bingqiang, LI Xingmu, WEI Haoming, SHAN Yansu. Advances in the Preparation of Halide Perovskite Thin Films by Pulsed Laser Deposition[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250449.
| [1] SMITH H M, TURNER A J A O. Vacuum deposited thin films using a ruby laser.Applied Optics, 1965, 4(1): 147. [2] DIJKKAMP D, VENKATESAN T, WU X, et al. Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high TC bulk material. Applied Physics Letters, 1987, 51(8): 619. [3] WAGNER G, LANGE U, BENTE K,et al. Defect structure of monocrystalline (001)-oriented Zn0.62Cu0.19In0.19S films grown on GaP by pulsed laser deposition (PLD). Journal of Crystal Growth, 2000, 209(1): 68. [4] LU X Y, FAN X J, ZHANG H,et al. Review on preparation of perovskite solar cells by pulsed laser deposition. Inorganics, 2024, 12(5): 128. [5] SHEPELIN N A, TEHRANI Z P, OHANNESSIAN N,et al. A practical guide to pulsed laser deposition. Chemical Society Reviews, 2023, 52(7): 2294. [6] MOMBLONA C, GIL-ESCRIG L, BANDIELLO E,et al. Efficient vacuum deposited pin and nip perovskite solar cells employing doped charge transport layers. Energy Environ. Sci., 2016, 9(11): 3456. [7] KREBS H-U, WEISHEIT M, FAUPEL J, et al. Advances in Solid State Physics: Pulsed Laser Deposition (PLD)-a Versatile Thin Film Technique. Springer, 2003: 505-518. [8] HUANG Y, ZHANG L C, WANG J B, et al. Enhanced photoresponse of n-ZnO/p-GaN heterojunction ultraviolet photodetector with high-quality CsPbBr3 films grown by pulse laser deposition. Journal of Alloys and Compounds, 2019, 802: 70. [9] SINGH R K, NARAYAN J J P R B. Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model.Physical Review B, 1990, 41(13): 8843. [10] WILLMOTT P, HUBER J J R O M P. Pulsed laser vaporization and deposition.Reviews of Modern Physics, 2000, 72(1): 315. [11] AHMADI M, WU T, HU B J A M. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics.Advanced Materials, 2017, 29(41): 1605242. [12] STYLIANAKIS M M, MAKSUDOV T, PANAGIOTOPOULOS A,et al. Inorganic and hybrid perovskite based laser devices: a review. Materials, 2019, 12(6): 859. [13] WANG H L, LIU H C, LI W P,et al. Inorganic perovskite solar cells based on carbon electrodes. Nano Energy, 2020, 77: 105160. [14] BARTEL C J, SUTTON C, GOLDSMITH B R,et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 2019, 5(2): 693. [15] QIAO H W, YANG S, WANG Y,et al. A gradient heterostructure based on tolerance factor in high‐performance perovskite solar cells with 0.84 fill factor. Advanced Materials, 2019, 31(5): 1804217. [16] CHEN Y, LI F Q, ZHANG M,et al. Recent progress on boosting the perovskite film quality of all-inorganic perovskite solar cells. Coatings, 2023, 13(2): 281. [17] WANG Y, WANG Y, DOHERTY T A S,et al. Octahedral units in halide perovskites. Nature Reviews Chemistry, 2025, 9(4): 261. [18] KIM H S, SEO J Y, PARK N G.Material and device stability in perovskite solar cells.Chemsuschem, 2016, 9(18): 2528. [19] STRANKS S D, EPERON G E, GRANCINI G,et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341. [20] KOJIMA A, TESHIMA K, SHIRAI Y,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050. [21] LI F Z, DENG X, SHI Z S,et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nature Photonics, 2023, 17(6): 478. [22] GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells.Nature Photonics, 2014, 8(7): 506. [23] BAI D, BIAN H, JIN Z,et al. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy, 2018, 52: 408. [24] UNGER E L, HOKE E T, BAILIE C D,et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 2014, 7(11): 3690. [25] CORREA-BAENA J P, SALIBA M, BUONASSISI T,et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739. [26] AN B, MA Y, CHU F,et al. Growth of centimeter scale Nb1-xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Research, 2022, 15(3): 2608. [27] DING X H, CHEN H B, WU Y H,et al. Triple cation additive NH3+C2H4NH2+C2H4NH3+-induced phase-stable inorganic α-CsPbI3 perovskite films for use in solar cells. Journal of Materials Chemistry A, 2020, 8(24): 12177. [28] WAN X J, YU Z, TIAN W M,et al. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46: 8. [29] HSIAO S Y, LIN H L, LEE W H,et al. Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Advanced Materials, 2016, 28(32): 7013. [30] BECKER P, MáRQUEZ J A, JUST J,et al. Low temperature synthesis of stable γ‐CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Advanced Energy Materials, 2019, 9(22): 1900555. [31] SHAHIDUZZAMAN M, YONEZAWA K, YAMAMOTO K,et al. Improved reproducibility and intercalation control of efficient planar inorganic perovskite solar cells by simple alternate vacuum deposition of PbI2 and CsI. ACS Omega, 2017, 2(8): 4464. [32] FISSEL A, SCHRöTER B, RICHTER W J A P L. Low‐temperature growth of SiC thin films on Si and 6H-SiC by solid‐source molecular beam epitaxy.Applied Physics Letters, 1995, 66(23): 3182. [33] TONG G, CHEN T, LI H,et al. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 2019, 65: 104015. [34] YAN S, PATEL J B, LEE J E,et al. A templating approach to controlling the growth of coevaporated halide perovskites. ACS Energy Letters, 2023, 8(10): 4008. [35] HE T, DONG N, YAO Y,et al. Systematic study on CsSnBr3 perovskite microcrystals: chemical vapor deposition growth, structure, stability and optical properties. Chinese Journal of Chemical Physics, 2023, 36(4): 477. [36] LIU D D, LI X L, SHI C W,et al. CH3NH3PbI3 thin films prepared by pulsed laser deposition for optoelectronic applications. Materials Letters, 2017, 188: 271. [37] MIYADERA T, SUGITA T, TAMPO H,et al. Highly controlled codeposition rate of organolead halide perovskite by laser evaporation method. ACS Applied Materials & Interfaces, 2016, 8(39): 26013. [38] BANSODE U, OGALE S.On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications.Journal of Applied Physics, 2017, 121(13): 133107. [39] SOTO-MONTERO T, MORALES-MASIS M J A E L. Laser deposition of metal halide perovskites.ACS Energy Letters, 2024, 9(8): 4199. [40] BHANDARI S, HAO B Y, WATERS K,et al. Two-dimensional gold quantum dots with tunable bandgaps. ACS Nano, 2019, 13(4): 4347. [41] BANSODE U, NAPHADE R, GAME O,et al. Hybrid perovskite films by a new variant of pulsed excimer laser deposition: a room-temperature dry process. Journal of Physical Chemistry C, 2015, 119(17): 9177. [42] LIANG Y G, YAO Y Y, ZHANG X H,et al. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition. AIP Advances, 2016, 6(1): 015001. [43] KRALJ S, ARTUK K, WIECZOREK A,et al. Template‐Assisted growth of CsxFA1-xPbI3 with pulsed laser deposition for single junction perovskite solar cells. Advanced Energy Materials, 2025, 15(24): 2406033. [44] MOHD ZUBIR N S, ZHANG H, ZOU G,et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature. Journal of Electronic Materials, 2019, 48(11): 7562. [45] CAI J X, LI F X, ZHANG X S,et al. Application of pulsed laser deposition (PLD) technology in the preparation of two-dimensional (2D) film materials. Materials, 2025, 18(13): 2999. [46] YANG J, YAN D J C S R. Weak epitaxy growth of organic semiconductor thin films.Chemical Society Reviews, 2009, 38(9): 2634. [47] WANG H, WU Y, MA M Y,et al. Pulsed laser deposition of CsPbBr3 films for application in perovskite solar cells. ACS Applied Energy Materials, 2019, 2(3): 2305. [48] HUANG Y, ZHANG L C, WANG J B,et al. Growth and optoelectronic application of CsPbBr3 thin films deposited by pulsed-laser deposition. Optics Letters, 2019, 44(8): 1908. [49] SOTO-MONTERO T, SOLTANPOOR W, KRALJ S, et al. Single-source pulsed laser deposition of MAPbI3. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021: 1318-1323. [50] SONG Q L, ZHANG H, JIN X,et al. Highly stable all-inorganic CsPbBr3 perovskite solar cells based on pulsed laser deposition. Applied Physics Letters, 2023, 123(9): 092103. [51] CHENG X M, CUI W Y, ZHU L,et al. Vertical MSM-type CsPbBr3 thin film photodetectors with fast and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. [52] JI L, HSU H Y, LEE J C,et al. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Letters, 2018, 18(2): 994. [53] TSUKAZAKI A, OHTOMO A, ONUMA T,et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42. [54] CHEN J, MORROW D J, FU Y P,et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). Journal of the American Chemical Society, 2017, 139(38): 13525. [55] JIA R, XIN Y, POTTER M,et al. Long-distance remote epitaxy. Nature, 2025, 646(8085): 584. [56] BORRI C, CALISI N, GALVANETTO E,et al. First proof-of-principle of inorganic lead halide perovskites deposition by magnetron-sputtering. Nanomaterials, 2019, 10(1): 60. [57] XU F, LI Y J, YUAN B L,et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering. Journal of Applied Physics, 2021, 129(24): 245303. [58] MA X Y, ZHENG H F, WANG Y L, et al. Plasma sputtering halide perovskite for photovoltaic applications. ACS Materials Letters, 2024, 6(11): 5076. [59] JUNG S Y, HAN D H, NING R,et al. Extreme sputtering: Epitaxy of multifunctional oxides heterostructures. Journal of Advanced Ceramics, 2024, 13(12): 1919. [60] JIA C M, ZHAO X Y, LAI Y H,et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60: 476. [61] RIEGER J, KISSLINGER T, RAABGRUND A,et al. Epitaxial inorganic metal-halide perovskite films with controlled surface terminations. Physical Review Materials, 2023, 7(3): 035403. [62] DE PADOVA P, OTTAVIANI C, OLIVIERI B,et al. The role of SiO2 buffer layer in the molecular beam epitaxy growth of CsPbBr3 perovskite on Si (111). Scientific Reports, 2024, 14(1): 23618. [63] MARKOV I, STOYANOV S J C P. Mechanisms of epitaxial growth.Contemporary Physics, 1987, 28(3): 267. [64] ROYER L J B D M. Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d'espèces différentes.Bulletin de Minéralogie, 1928, 51(1): 7. [65] LUNT R R, SUN K, KRöGER M,et al. Ordered organic-organic multilayer growth. Physical Review B, 2011, 83(6): 064114. [66] DONG J C, ZHANG L N, DAI X Y,et al. The epitaxy of 2D materials growth. Nature Communications, 2020, 11(1): 5862. [67] CAO L, XU Y, ZHAO B,et al. A structural investigation of high-quality epitaxial thin films. Journal of Physics D: Applied Physics, 1997, 30(10): 1455. [68] EASON R. Materials Science, Engineering, Physics.Pulsed Laser Deposition of Thin Films: Applications-led Growth of Functional Materials. John Wiley & Sons, 2006. [69] WANG B, ZHANG B Z, ZHONG S P,et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. Journal of Materials Chemistry C, 2020, 8(15): 4988. [70] HU Y, JIANG J, ZHANG L, et al. Epitaxy and strain engineering of halide perovskites. Halide Perovskite Semiconductors, 2024: 351-375. [71] CAO H, ZHANG J, BAI W, et al. Molecular beam epitaxy, photoluminescence from Mn2+ multiplets and self-trapped exciton states of γ-MnTe single-crystalline thin films. Applied Surface Science, 2023, 611: 155733. [72] LO Y J A P L. New approach to grow pseudomorphic structures over the critical thickness.Applied Physics Letters, 1991, 59(18): 2311. [73] OHNISHI T, KOINUMA H, LIPPMAA M J A S S. Pulsed laser deposition of oxide thin films.Applied Surface Science, 2006, 252(7): 2466. [74] CHRISTEN H M, ERES G J J O P C M. Recent advances in pulsed-laser deposition of complex oxides.Journal of Physics: Condensed Matter, 2008, 20(26): 264005. [75] JIA R, KUM H S, SUN X,et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. Journal of Vacuum Science & Technology A, 2021, 39(4): 040405. [76] HAVELIA S, WANG S, SKOWRONSKI M,et al. Controlling the Bi content, phase formation, and epitaxial nature of BiMnO3 thin films fabricated using conventional pulsed laser deposition, hybrid pulsed laser deposition, and solid state epitaxy. Journal of Applied Physics, 2009, 106(12): 123509. [77] OKA D, HIROSE Y, FUKUMURA T,et al. Heteroepitaxial growth of perovskite CaTaO2N thin films by nitrogen plasma-assisted pulsed laser deposition. Crystal Growth & Design, 2014, 14(1): 87. [78] WANG L L, CHEN P, KUTTIPILLAI P S,et al. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Applied Materials & Interfaces, 2019, 11(35): 32076. [79] YUAN S Q, GAN B, QIAN L,et al. Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy. Scripta Materialia, 2021, 203: 114. [80] WANG Y, SUN X, CHEN Z,et al. High‐temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Advanced Materials, 2017, 29(35): 1702643. [81] CHEN Y M, LEI Y S, LI Y H,et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 2020, 577(7789): 209. [82] ZHANG J S, GUO Q, LI X, et al. Solution-Processed Epitaxial Growth of Arbitrary Surface Nanopatterns on Hybrid Perovskite Monocrystalline Thin Films. Acs Nano, 2020, 14(9): 11029-11039. [83] WANG L, CHEN P, THONGPRONG N,et al. Unlocking the single‐domain epitaxy of halide perovskites. Advanced Materials Interfaces, 2017, 4(22): 1701003. [84] MATSUBARA S, MIURA S, MIYASAKA Y,et al. Preparation of epitaxial ABO3 perovskite‐type oxide thin films on a (100) MgAl2O4/Si substrate. Journal of Applied Physics, 1989, 66(12): 5826. [85] ZHU H F, MA H F, ZHAO Y Y.In-situ growth of high-quality epitaxial BiFeO3 thin film via off-axis RF magnetron sputtering. Vacuum, 2018, 157: 428. [86] SOLOMON J S, SOTO-MONTERO T, BIRKHöLZER Y A,et al. Room-temperature epitaxy of α-CH3NH3PbI3 halide perovskite by pulsed laser deposition. Nature Synthesis, 2025, 4(4): 432. [87] CUI W Y, ZHOU Y, CHENG X M,et al. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity. Applied Physics Letters, 2024, 125(18): 182102. [88] ZHOU Y, YUAN B L, WEI H M,et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 2022, 120(11): 112109. [89] XING R F, SHI P, WU Z F, et al. Van der waals epitaxial deposition of CsPbBr3 films for flexible optoelectronic applications. ACS Applied Electronic Materials, 2022, 4(3): 1351. [90] SHAN Y, CUI W, ZHOU Y,et al. Lead-free perovskite Cs2AgBiBr6 epitaxial thin films for high-performance and air-stable photodetectors. Journal of Materials Chemistry C, 2025, 13(18): 9072. [91] WANG A-W, ZHU L-P, SHAN Y-S,et al. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. [92] ZHU L P, CHENG X M, WANG A W,et al. High performance CsPbBr3 epitaxial film photodetector with ultralow dark current and record detectivity. Applied Physics Letters, 2023, 123(21): 212105. [93] BRENNER P, STULZ M, KAPP D,et al. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Applied Physics Letters, 2016, 109(14): 141106. [94] LU Y, JUNG Y K, DUBAJIC M,et al. Layer-by-layer epitaxial growth of perovskite heterostructures with tunable band offsets. Science, 2025, 390(6774): 716. |
| [1] | WANG Yang, ZHU Jia-Qi, HU Zhong-Bo, DAI Bing. Heteroepitaxial Growth of Single Crystal Diamond Films on Iridium: Procedure and Mechanism [J]. Journal of Inorganic Materials, 2019, 34(9): 909-917. |
| [2] | XIAO Na, PANG Yang, SONG Yun, WU Xiao-Jing, FU Zheng-Wen, ZHOU Yong-Ning. Electrochemical Behavior of Sb-Si Nanocomposite Thin Films as Anode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2018, 33(5): 494-500. |
| [3] | ZHANG Cong, KANG Chao-Yang, ZONG Hai-Tao, LI Ming, LIANG Shan-Shan, CAO Guo-Hua. Stress Induced Modulation of the Structure and Photoelectric Property of Vanadium Oxide Films on Sapphire Substrate [J]. Journal of Inorganic Materials, 2018, 33(11): 1225-1231. |
| [4] | ZHANG Zhi-Ping, LIU Hong-Fei, PAN Kun-Min, CHEN Xiao-Bing, ZENG Xiang-Hua. Synthesis of Negative Thermal Expansion Sc2W3O12 Thin Film [J]. Journal of Inorganic Materials, 2015, 30(12): 1278-1282. |
| [5] | LV Yan-Hong, CHEN Ji-Kun, DOBELI Max, LI Yu-Long, SHI Xun, CHEN Li-Dong. Congruent Growth of Cu2Se Thermoelectric Thin Films Enabled by Using High Ablation Fluence During Pulsed Laser Deposition [J]. Journal of Inorganic Materials, 2015, 30(10): 1115-1120. |
| [6] | YAN Yi-Zhi, YIN Xue-Peng, LIU Xiang, CHEN Qing-Ming. Influence of Growth Temperature and Oxygen Pressure on Laser-induced Voltage Effect of La0.67Sr0.33MnO3:Ag0.08 Thin Films [J]. Journal of Inorganic Materials, 2014, 29(7): 753-757. |
| [7] | QIU Zhi-Wen, YANG Xiao-Peng, HAN Jun1 ZENG Xue-Song, LI Xin-Hua, CAO Bing-Qiang. p-type Sodium-doped Zinc Oxide Nanowire Arrays Grown by High-pressure Pulsed Laser Deposition [J]. Journal of Inorganic Materials, 2014, 29(2): 155-161. |
| [8] | CHEN Dan, Lü Jian-Guo, HUANG Jing-Yun, JIN Yu-Zhe, ZHANG Hao-Xiang, YE Zhi-Zhen. Performances of GaN-based LEDs with AZO Films as Transparent Electrodes [J]. Journal of Inorganic Materials, 2013, 28(06): 649-652. |
| [9] | ZHU Ming-Xing, SHI Biao, CHEN Yi, LIU Xue-Chao, SHI Er-Wei. High-speed Homoepitaxial Growth of 4H-SiC [J]. Journal of Inorganic Materials, 2012, 27(8): 785-789. |
| [10] | LI Ting-Xian, ZHANG Ming, HU Zhou, LI Kuo-She, YU Dun-Bo, YAN Hui. Preparation and Strong Magnetoelectric Effect of Multiferroic BaTiO3/La2/3Sr1/3MnO3 Composite Film [J]. Journal of Inorganic Materials, 2012, 27(3): 291-295. |
| [11] | LIU Hong-Fei, ZHANG Zhi-Ping, ZHANG Wei, CHEN Xiao-Bing, CHENG Xiao-Nong. Preparation and Properties of ZrW2O8 Thin Films Deposited by Pulsed Laser Deposition [J]. Journal of Inorganic Materials, 2011, 26(5): 540-544. |
| [12] | LI Man, LIU Bao-ting,WANG Yu-qiang,WANG Kuan-mao. Effect of RapidThermal Annealing on Structural And and Electrical characteristics Characteristics of Ni-Al-O gate Gate dielectrics Dielectrics [J]. Journal of Inorganic Materials, 2011, 26(3): 257-260. |
| [13] | DENG Zan-Hong, , FANG Xiao-Dong, , TAO Ru-Hua, , DONG Wei-Wei, , ZHOU Shu, , MENG Gang, , SHAO Jing-Zhen,. Effect of Deposition LaserEnergy on the Optical Properties of CuAlO2 Films [J]. Journal of Inorganic Materials, 2011, 26(3): 281-285. |
| [14] | WANG Lin, TIAN Lin-Hai, WEI Guo-Dong, GAO Feng-Mei, ZHENG Jin-Ju, YANG Wei-You. Epitaxial Growth of Graphene and Their Applications in Devices [J]. Journal of Inorganic Materials, 2011, 26(10): 1009-1019. |
| [15] | CHENG Xue-Rui-1, QI Ze-Ming-2, 3 , ZHANG Guo-Bin-2, 3 , LI Ting-Ting-2, 3 , HE Bo-2, 3 , YIN Min-1. Structure and Dielectric Properties of HfO2 Thin Films [J]. Journal of Inorganic Materials, 2010, 25(5): 468-472. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||