Journal of Inorganic Materials
XU Ming1,2, WANG Yuanfei3, WU Tong1,2
Received:2025-10-30
Revised:2025-11-24
Contact:
WU Tong, Professor. E-mail: tongwu24@163.com
About author:XU Ming (1998-), Male, PhD candidate. E-mail: xumingmed@163.com
Supported by:CLC Number:
XU Ming, WANG Yuanfei, WU Tong. Puerarin/Mesoporous Bioactive Glass Composites: Preparation and In Vitro Synergistic Osteogenic-promotion[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250433.
| [1] WEI Y, PAN H, YANG J, et al. Aligned cryogel fibers incorporated 3D printed scaffold effectively facilitates bone regeneration by enhancing cell recruitment and function. Science Advance, 2024, 10(6): eadk6722. [2] YU C, CHEN J, WANG T,et al. GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects. Journal of Nanobiotechnology, 2024, 22(1): 696. [3] MOY P K, AGHALOO T.Risk factors in bone augmentation procedures.Periodontology 2000, 2019, 81(1): 76. [4] LALZAWMLIANA V, ANAND A, ROY M, et al. Mesoporous bioactive glasses for bone healing and biomolecules delivery. Materials Science and Engineering: C, 2020, 106: 110180. [5] VALLET-REGI M, SALINAS A J.Mesoporous bioactive glasses for regenerative medicine.Materials Today Biology, 2021, 11: 100121. [6] SCHUMACHER M, HABIBOVIC P, VAN RIJT S.Mesoporous bioactive glass composition effects on degradation and bioactivity.Bioactive Materials, 2021, 6(7): 1921. [7] CUI Y, HONG S, JIANG W, et al. Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioactive Materials, 2024, 34: 436. [8] ZHOU Y-X, ZHANG H, PENG C.Puerarin: A review of pharmacological effects.Phytotherapy Research, 2014, 28(7): 961. [9] ZENG X, FENG Q, ZHAO F, et al. Puerarin inhibits TRPM3/miR-204 to promote MC3T3-E1 cells proliferation, differentiation and mineralization. Phytotherapy Research, 2018, 32(6): 996. [10] YANG X, YANG Y, ZHOU S,et al. Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways. Current Molecular Medicine, 2018, 17(7): 488. [11] YANG Y, CHEN D, LI Y, et al. Effect of puerarin on osteogenic differentiation in vitro and on new bone formation in vivo. Drug Design, Development and Therapy, 2022, 16: 2885. [12] KANG S, BENNETT C N, GERIN I, et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. Journal of Biological Chemistry, 2007, 282(19): 14515. [13] LI B, WANG Y, GONG S, et al. Puerarin improves OVX-induced osteoporosis by regulating phospholipid metabolism and biosynthesis of unsaturated fatty acids based on serum metabolomics. Phytomedicine, 2022, 102: 154198. [14] PANG Z, WEI Y, WANG N, et al. Gel formation of puerarin and mechanistic study during its cooling process. International Journal of Pharmaceutics, 2018, 548(1): 625. [15] ZHANG L.Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine.Drug Delivery, 2019, 26(1): 860. [16] HU Q, LI Y, ZHAO N, et al. Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Materials Letters, 2014, 134: 130. [17] YUN H-S, KIM S-H, LEE S, et al. Synthesis of high surface area mesoporous bioactive glass nanospheres. Materials Letters, 2010, 64(16): 1850. [18] HENCH L L, WILSON J.Surface-active biomaterials.Science, 1984, 226(4675): 630. [19] YANG S-Y, HU Y, ZHAO R, et al. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitis via the miR-21a-5p/PDCD4/NF-κB pathway. Journal of Nanobiotechnology, 2024, 22(1): 94. [20] ZHENG K, BOCCACCINI A R.Sol-gel processing of bioactive glass nanoparticles: A review.Advances in Colloid and Interface Science, 2017, 249: 363. [21] LIGA S, VODĂ R, LUPA L, et al. Synthesis of Ag2O/Ag nanoparticles using puerarin: characterization, cytotoxicity, in ovo safety profile, antioxidant, and antimicrobial potential against nosocomial pathogens. Journal of Functional Biomaterials, 2025, 16(7): 258. [22] GARCíA-PERDIGUERO J C, GóMEZ-CEREZO N, GISBERT-GARZARáN M, et al. Unraveling the role of calcium in the osteogenic behavior of mesoporous bioactive glass nanoparticles. Acta Biomaterialia, 2025, 198: 482. [23] CHEN M, WANG Y, YUAN P, et al. Multifunctional bioactive glass nanoparticles: surface-interface decoration and biomedical applications. Regenerative Biomaterials, 2024, 11: rbae110. [24] WANG X, WANG G, ZHANG Y.Research on the biological activity and doxorubicin release behaviorin vitro of mesoporous bioactive SiO2-CaO-P2O5 glass nanospheres. Applied Surface Science, 2017, 419: 531. [25] ANAND A, DAS P, NANDI S K, et al. Development of antibiotic loaded mesoporous bioactive glass and its drug release kinetics. Ceramics International, 2020, 46(4): 5477. [26] SOUNDRAPANDIAN C, MAHATO A, KUNDU B, et al. Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40: 1. [27] ZHU Y, KASKEL S.Comparison of thein vitro bioactivity and drug release property of mesoporous bioactive glasses(MBGs)and bioactive glasses(BGs)scaffolds. Microporous and Mesoporous Materials, 2009, 118(1): 176. [28] ZHAO L, YAN X, ZHOU X, et al. Mesoporous bioactive glasses for controlled drug release. Microporous and Mesoporous Materials, 2008, 109(1): 210. [29] ALMASRI D, DAHMAN Y.Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property.Journal of Biomaterials Applications, 2025, 39(9): 1064. [30] VIMALRAJ S.Alkaline phosphatase: Structure, expression and its function in bone mineralization.Gene, 2020, 754: 144855. [31] QUARLES L D, YOHAY D A, LEVER L W, et al. Distinct proliferative and differentiated stages of murine MC3T3‐E1 cells in culture: An in vitro model of osteoblast development. Journal of Bone and Mineral Research, 1992, 7(6): 683. [32] BROWN E M, MACLEOD R J.Extracellular calcium sensing and extracellular calcium signaling.Physiological Reviews, 2001, 81(1): 239. [33] LIU Y K, LU Q Z, PEI R, et al. The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomedical Materials, 2009, 4(2): 025004. [34] DANOUX C B, BASSETT D C, OTHMAN Z, et al. Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015, 17: 1. |
| [1] | ZHANG Bo, FU Yimin, CHEN Zheng, SHI Ao, ZHU Min. Near-infrared Responsive Biphasic Antibacterial Mesoporous Bioactive Glass Composite Scaffolds: Preparation and Antibacterial Performance [J]. Journal of Inorganic Materials, 2025, 40(10): 1137-1144. |
| [2] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
| [3] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
| [4] | GUO Xiaowei, LI Yuyan, CHEN Nanchun, WANG Xiuli, XIE Qinglin. Construction of Sustainable Release Antimicrobial Microspheres Loaded with Potassium Diformate [J]. Journal of Inorganic Materials, 2021, 36(2): 181-187. |
| [5] | HU Li-Fang,LIU Liu,HE Jie,SUN Zhi-Peng,CHEN Xiao-Ping. Aspirin on Ni-Ti-LDHs Nanosheets: Load and Sustained-release [J]. Journal of Inorganic Materials, 2020, 35(2): 165-172. |
| [6] | LI Kun-Qiang,QIAO Yu-Qin,LIU Xuan-Yong. Titanium Modified by Copper Ion Implantation: Anti-bacterial and Cellular Behaviors [J]. Journal of Inorganic Materials, 2020, 35(2): 158-164. |
| [7] | DONG Zhi-Hong, NIE Zhi-Ping, ZHOU Chang-Chun. Bionic Remineralization of Acidic Etched Enamel Induced by Using Mesoporous Bioactive Glass in Natural Oral Saliva [J]. Journal of Inorganic Materials, 2016, 31(1): 88-94. |
| [8] | LI Yan-Yun, LI Song-Mei, LIU Jian-Hua, YU Mei. Preparation and Anti-mildew Properties of TPN-SDS-layered Double Hydroxide Nanohybrids [J]. Journal of Inorganic Materials, 2014, 29(5): 515-522. |
| [9] | ZHANG Yi-Xuan, LI Song-Mei, LIU Jian-Hua, YU Mei. Preparation of BIT-layered Double Hydroxide and the Study of Antifungal Properties [J]. Journal of Inorganic Materials, 2013, 28(9): 1025-1032. |
| [10] | YANG Guo-Jing, LIN Mian, ZHANG Lei, GOU Zhong-Ru. Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair [J]. Journal of Inorganic Materials, 2013, 28(8): 795-803. |
| [11] | ZENG Xiao-Bo, HU Hao, XIE Li-Qin, LAN Fang, WU Yao, GU Zhong-Wei. Preparation and Properties of Supermagnetic Calcium Phosphate Composite Scaffold [J]. Journal of Inorganic Materials, 2013, 28(1): 79-84. |
| [12] | Lü Xiao-Ying, HUANG Yan, YU Ya-Dong, YANG Ya-Min. Application of Genomics/Proteomics Technologies in the Research of Biocompatibility of Biomaterials [J]. Journal of Inorganic Materials, 2013, 28(1): 21-28. |
| [13] | CHEN Yu, LI Wen-Rui, XU Can, SU Jia-Can, LI Ming, LIU Chang-Sheng. Study on Hemostatic Materials of Mesoporous Silicon Dioxide Doped Ca and Ag with Antibacterial Properties [J]. Journal of Inorganic Materials, 2012, 27(5): 513-518. |
| [14] | HAN Xue, CHEN Xiao-Feng, MENG Yong-Chun, ZHOU Jia-An, LIN Cai, JIANG Xiao-Rui, ZHANG Xin-Xin. Biocompatibility of the Composite Scaffold of Sol-Gel Bioactive Glass/Collagen [J]. Journal of Inorganic Materials, 2011, 26(8): 869-873. |
| [15] | CAO Lie-Hui, YU Bao-Qing, WU Guo-Sheng, SU Jia-Can. Study on Adulterate Sodium Silica Apatite Cement Porous Scaffolds for Bone Defect Repair [J]. Journal of Inorganic Materials, 2011, 26(6): 591-596. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||